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Notations

The following notations are used throughout the whole document.

û or u∧: Fourier transform of u
ũ: optimal u
? : convolution product
R: set of real numbers
BV : Bounded Variations function space
G: Meyer's space of oscillatory functions
W s,p: Sobolev spaces
Bs
p,q: Besov spaces

WST , CST : Wavelet and Contourlet Soft Thresholdings, respectively
∆j : Littlewood-Paley �lter at scale j

ENS: Ecole Normale Supérieure

CMLA: Centre de Mathématiques et de Leurs Applications

UCLA: University of California, Los Angeles
DGA: Direction Générale pour l'Armement (an institution of the French
Ministry of Defense)
D.O.D: Department Of Defense
NATO: North Atlantic Treaty Organization
IR: Infrared
MTF: Modulation Transfert Function
PSF: Point Spread Function
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Chapter 1

Introduction

In less than two decades, thanks to the constant increase of computing power,
image processing has become a full-�edged �eld. Like any other scienti�c
�eld, mathematics is now at the core of new developments meeting new prob-
lems and creating new tools (both theoretical and applied). All mathematical
branches, such as partial di�erential equations, Fourier analysis, multiresolu-
tion analysis (wavelets and their geometric extensions), functional analysis,
. . . are used to solve image processing problems. Despite a huge number of
new methods and algorithms, two main topics in image processing still need
further investigation: image analysis and image restoration.

The goal of image analysis is to extract information from an image or a
sequence of images. This kind of problem has strong connections with com-
puter vision and covers a large spectrum of applications like measuring phys-
ical parameters (cell sizes in microscopy, matter properties, temperature of
objects, . . . ), detecting speci�c objects (tumor detection in medical imaging,
vehicle detection and recognition for military applications, . . .) or providing
some autonomy to arti�cial systems (robots, for example) by reconstructing
their environment. The main goal of image analysis is to obtain relevant fea-
tures which best represent the desired information. Such purposes generally
lead to mathematical modeling problems. A well known example concerns
textures characterization where di�erent approaches were proposed (statis-
tical tools, wavelets analysis, . . .) providing interesting results in particular
cases. But the construction of a general model to represent textures remains
an intense and challenging research �eld.

Image restoration is probably one of the most important topics today beause

9



10 CHAPTER 1. INTRODUCTION

it appears in all imaging processes. Indeed, each image is acquired via speci�c
equipment with imperfections that consequently creates some errors (blur,
distortions, . . .) in the image. Moreover, independent of the type of imag-
ing system (light, electromagnetic, . . .), the media through which �objects�
are observed also in�uences the quality of the image received by the sensor.
These are the reasons why restoration techniques are widely studied in the
literature.

Before my current position at UCLA, I spent nine years as an �image pro-
cessing expert� at the Direction Générale pour l'Armement (DGA), an in-
stitution of the French Ministry of Defense. My main work concerned im-
age processing for passive and active infrared imaging systems. An impor-
tant military image processing application is the Automatic Target Detec-
tion/Recognition and Tracking (ATD/ATR/ATT) algorithms. The most
di�cult case is when targets (typically vehicles) are camou�aged in a rural
environment, because advanced textures analysis tools are needed. My in-
terest in texture modeling and analysis comes from this problem. It was the
topic of my Ph.D. and continues now to drive some of my research activi-
ties. My contributions on texture modeling/decomposition are presented in
chapter 3. My second major interest concerns the problem of observation
through atmospheric turbulences. This question arises for ground to ground
long range imaging systems where the impact of the atmosphere becomes non
negligible. Turbulence in the air causes two main e�ects: blur and geometric
distortions which need to be restored if we want to retrieve details on objects
for recognition purposes. I led investigations on this topic which resulted in
two important contributions; one on turbulence stabilization and another on
atmospheric deblurring. Chapter 4 presents this work and shows that it is
at the crossroad of many �elds (mathematics, physics, optics, . . .). Other
contributions in infrared image processing are presented in chapter 5 while
chapter 6 gives an overview of my current and future research investigations.
Finally, all my publications are listed in chapter 7.



Chapter 2

Personal statement

2.1 Curriculum Vitae

Jérôme Gilles - Assistant Adjunct Professor

Born in January 07, 1974 at Langres (France).

Academic Address B:
Department of Mathematics
University of California Los Angeles (UCLA),
520 Portola Plaza - O�ce 7324,
Los Angeles, CA 90095-1555, USA

Phone number T: (001) 310-794-7737
Email k: jegilles@math.ucla.edu
Homepage Ï: http://www.math.ucla.edu/∼jegilles

2.1.1 Professional experience

Since November 2010, I have been an Assistant Adjunct Professor at the
Department of Mathematics at UCLA. In this position, I have a teaching
charge and a research post on Professor Stanley Osher's team.

From September 2001 to August 2010, I occupied the position of Professeur
Agrégé for the French Ministry of Defense in France. I was assigned to the Di-
rection Générale pour l'Armement (DGA), in charge of research and studies
in image processing in the Department of Space, Observation, Intelligency
and UAVs. My �rst few years in this position were also dedicated to my
Ph.D. From 2004 to my departure I was the organizer of internal seminars
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about robotics, signal and image processing. I was appointed Head of scien-
ti�c activities and perspectives of the Department in 2007.

In addition, I am an associate member of the Centre de Mathématiques et de

Leurs Applications (CMLA) of Ecole Normale Supérieure (ENS) of Cachan.

2.1.2 Education

2006: Ph.D. Thesis in Mathematics at the Ecole Normale Supérieure of

Cachan, Defended in June 22, 2006
Title: Décomposition et détection de structures géométriques en im-

agerie (Decomposition and detection of geometrical structures in imag-
ing).
Commitee:

• President: Prof. Jean-Michel Morel

• Rewiewers: Prof. Henri Maître and Prof. Gilles Aubert

• Referee: Dr. Frédéric Pradeilles

• Supervisors: Prof. Yves Meyer and Dr. Bertrand Collin

1999: Fourth year at ENS Cachan. Diplôme d'Etudes Approfondies (DEA)
of ENS Cachan
Speciality: Automatic and signal processing,

1998: Third year at ENS Cachan. Preparation of Agrégation in Electrical
Engineering (speciality: Electronics and Computer Sciences),

1997: Second year at ENS Cachan. Maîtrise EEA delivered by Paris XI
University,

1996: First year at ENS Cachan. Licence ingénierie électrique delivered by
Paris XI University,

1992-1995: Classes préparatoires aux Grandes Ecoles,

1992: Baccalauréat, speciality: electronics.

2.2 Academic involvements

2.2.1 Teaching

I currently teach the following undergraduate courses at UCLA:
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• Methods of Applied Mathematics (∼ 30 students): dimensional analy-
sis, perturbation methods, variational calculus, Fourier series, Green's
functions.

• Mathematical Modeling (∼ 45 students): population dynamics (logistic
equation, predator/prey model, Lotka-Volterra equation, phase-plane
methods for nonlinear systems), tra�c modeling (concepts of velocity
vector �elds, associated PDEs, methods of characteristics, wave prop-
agation).

• Calculus of Several Variables - B (integral calculus) (∼ 210 students):
de�nition of multiple integrals; polar, cylindrical and spherical coordi-
nates; curvilinear integrals; surface integrals; integrals of vector �elds;
divergence and curl operators; Green's, Stokes and divergence theo-
rems.

Previously on the margins of my position at the DGA, I was Assistant Pro-
fessor in di�erent engineering schools in France:

• Lecturer for the Master at ENST: Image processing for Defense appli-
cations, from 2007 to 2009.

• EUROSAE Advanced Training at ENSTA: Image processing - De-
formable models (active contours) - Image Modeling, from 2005 to
2010.

• Lecturer at ESIEE: Introduction to signal processing (third year), Ad-
vanced concepts for signal processing (fourth year), from 2006 to 2009.

• Preparatory classes at ENSTA: Initiation to C programing, from 2004
to 2009.

2.2.2 Student supervision

At the DGA, I supervised several students:

• Carlo De Franchis. "Déconvolution aveugle d'images" (Image blind
deconvolution). First year at Ecole Polytechnique, 2007/2008.
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• Tristan Dagobert. "Amélioration d'images infrarouges déformées par

la turbulence atmosphérique" (Restoration of infrared images degraded
by atmospheric turbulences). CNAM Engineer Diploma, 2007.

• Anne Favède. "Correction des e�ets de la turbulence atmosphérique

en imagerie passive et active" (Correction of atmospheric turbulence
e�ects in passive and active imaging). Fifth year at INPG Grenoble-
ENSERG, 2006.

• Damien Jeandrau. "Classi�cation de textures par SVM " (Texture clas-
si�cation by SVM). Second year at IUT de Cachan, 2005 .

• Sylvain Rousselle. "Segmentation de textures par plongement fractal"
(Texture segmentation by fractal embeddding). Fifth year at ESIEE,
2005.

• Nicolas Widynski. "Détection semi-automatique de réseaux routiers

dans le cadre d'images aériennes et satellites" (Semi-automatic road
network detection in aerial and satellite images). Third year at EPITA,
2005.

• Laurent Pigois. "Simulation des e�ets de la turbulence atmosphérique

par écrans de phase" (Simulation of atmospheric turbulence e�ects by
phase screens). DEA, Cergy University, 2004.

• Aurélien Zelty. "Segmentation d'images texturées par �ltrage de Ga-

bor" (Segmentation of textured images by Gabor �ltering). Third year
at EPITA, 2003.

• Mélissa Pinel. "Contrôle adaptatif de contraste local adapté aux im-

ages IR à forte dynamique" (Local contrast adaptive control for high
dynamic IR images). DESS, Orsay University, 2003.

• William Phommaly. "Correction du bruit de non-uniformité d'une ca-

méra matricielle" (Non-uniformity noise correction for matrix based
camera). DESS, Jussieu University, 2003.

From September 2009 to June 2012, I was involved in the supervision of the
Ph.D. thesis of Yohann Tendero with Prof. Jean-Michel Morel at CMLA
(ENS Cachan) on the topic of infrared image processing (Yohann Tendero
defended his Ph.D in June, 22th 2012). I am also currently involved in the



2.3. SCIENTIFIC COMMUNITY INVOLVEMENTS 15

work of two Ph.D. candidates at UCLA: Hayden Schae�er about image de-
composition models and Melissa Tong about underwater deconvolution.

I was in the referee commitee of the following Ph.D. thesis:

• Stéphanie Bigot-Marchand. Outils de traitement d'images adaptés au

traitement d'images omnidirectionnelles (Image processing tools adap-
ted to omnidirectional image processing). Picardie Jules Vernes Uni-
versity, speciality: Mathematics. Defended in October 15, 2008.

• Nicolas Morizet. Reconnaissance biométrique par fusion multimodale

du visage et de l'iris (Biometric recognition by face and iris multimodal
fusion). Telecom ParisTech, speciality: signal and images. Defended
in December 15, 2008.

2.3 Scienti�c community involvements

I am an active reviewer in the following journals (more than forty reviews at
the date this manuscript is written):

• IEEE transactions in image processing,

• IEEE signal processing letters,

• IEEE transactions in signal processing,

• IEEE transactions on geoscience and remote sensing,

• Journal of Mathematical Imaging and Vision,

• Journal of Visual Communication and Image Representation,

• The Visual Computer Journal.

• Journal of Electronic Imaging

Besides, I am in the scienti�c commitee of the ACIVS (Advanced Concept
for Intelligent Vision Systems) conference since 2009.
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2.4 Software development

During the years I spent at the DGA, I was one of the person in charge of
the development of the internal image processing library. This library, called
GAMMAG, was written in C and expected to provide an access to the most
used image processing algorithms (segmentation, enhancement, restoration,
. . .) to people of the department and to compile the di�erent research devel-
opments.
Since I am at UCLA, I wrote a Matlab toolbox, called the Bregman Cook-
book, which aims to provide denoising and deconvolution algorithms using
L1 minimization based on Bregman iterations. This toolbox is freely avail-
able on Matlab Central (a direct link can be found on my homepage).



Chapter 3

Image decomposition

This chapter mainly focuses on the work I did during my Ph.D. with Prof.
Yves Meyer. We investigated the ability to decompose an image into its re-
spective cartoon and textures parts. In the �rst section, I describe the math-
ematical models providing such decomposition and some numerical cues.
The second section is devoted to the idea of seeking a cartoon + texture +
noise decomposition to deal with noisy images. Finally in the last section I
concentrate on my contributions on theoretical aspects, �rst by recalling a
theorem which gives the di�erent decompositions according to the choice of
the parameters; and secondly by giving new recent results.

3.1 Structures + textures decomposition

3.1.1 Meyer's BV −G model

The image decomposition story starts with the work of Y. Meyer [30] who in-
vestigated the Rudin-Osher-Fatemi (ROF) algorithm [32]. Meyer noted that
this model is not e�cient to capture textures. In order to �x the notations
and to understand the concepts behind decomposing an image, let us recall
the ROF model. Assuming f is an observed image that is the addition of
the ideal scene u, the one we want to recover, and some noise b. The authors
of [32] propose to minimize the following functional to denoise u:

FROFλ (u) = J(u) +
λ

2
‖f − u‖2L2 . (3.1)

Because it preserves sharp edges, this model assumes that u is in BV (the
space of Bounded Variations), by setting J(u) as being the total variation of
u. This algorithm gives good results and is very easy to implement by the

17



18 CHAPTER 3. IMAGE DECOMPOSITION

use of Chambolle's nonlinear projectors [18] or Bregman iterations.

Now if, instead of considering a denoising problem, we follow the image
decomposition point of view, f = u+ v, where u is the structure part and v
the texture part, the functional in Eq.(3.1) can be rewritten as

FROFλ (u, v) = J(u) +
λ

2
‖v‖2L2 . (3.2)

Meyer shows that this model is not adapted to properly achieve this decom-
position. The following example illustrates that the more a texture oscillates,
the more it is removed from both u and v parts.

Example 1 Let v be a texture created from an oscillating signal over a �nite

domain. Then v can be written (x = (x1, x2)) as follows:

v(x) = cos(ωx1)θ(x), (3.3)

where ω is the frequency and θ the characteristic function over the considered

domain. Then we can calculate the L2 and BV norms of v, respectively. We

get

‖v‖L2 ≈
1√
2
‖θ‖L2 , (3.4)

which is constant ∀ω and does not specially capture the textures. In addition,

‖v‖BV =
ω

2π
‖θ‖L1 , (3.5)

which grows as ω →∞ and then clearly rejects the textures.

In order to capture textures in the v component, Meyer proposes to adapt
the ROF model by replacing L2 by another space, called G, which might
correspond to a space of oscillating functions. He proves that this space is
the dual space of BV (where BV = {f ∈ L2(R2) , ∇f ∈ L1(R2)}, which
is close to the BV space); see [30] for more theoretical details about these
spaces.
This space G is endowed by the following norm:

‖v‖G = inf
g

∥∥∥∥(|g1|2 + |g2|2
) 1

2

∥∥∥∥
L∞

, (3.6)

where g = (g1, g2) ∈ L∞(R2) × L∞(R2) and v = div g. If we calculate the
G-norm of the oscillating texture in Eq.(3.3) of example 1, we get

‖v‖G 6
C

|ω|
, (3.7)



3.1. STRUCTURES + TEXTURES DECOMPOSITION 19

where C is a constant. Then it is obvious to see that G is well adapted to
capture textures. Now, the modi�ed functional performing the structures +
textures decomposition is

F YMλ (u, v) = J(u) + λ‖v‖G, (3.8)

where f = u+ v, f ∈ G, u ∈ BV , v ∈ G.

3.1.2 Numerical implementation

The main drawback of this model is the presence of an L∞ norm in the
the expression of the G-norm (3.6) which does not allow classic variational
calculus for setting up numerical schemes.

The �rst numerical algorithm proposed to solve Meyer's model was the one
published by Vese and Osher in [34]. Their approach was based on the
theorem saying that ∀f ∈ L∞(Ω), ‖f‖L∞ = limp→∞ ‖f‖Lp and they wrote a
slightly modi�ed version of Meyer's functional:

FOVλ,µ,p(u, g) = J(u) + λ‖f − (u+ div g)‖2L2 + µ

∥∥∥∥√g2
1 + g2

2

∥∥∥∥
Lp
. (3.9)

Then classic variational calculus applies and results in a system of three con-
nected partial di�erential equations. All discretization details are available
in [34]. This algorithm works well but is very sensitive to the choice of its
parameters, which induces many instabilities.

Another way to solve Meyer's model was proposed in [2, 4, 7] by Aujol et al.
The authors proposed a dual-method approach that naturally arises because
of the dual relation between G and BV spaces. The problem is assumed to
be in the discrete case and de�ned over a �nite domain Ω. They proposed a
modi�ed functional to minimize, given by:

FAUλ,µ (u, v) = J(u) + J∗
(
v

µ

)
+ (2λ)−1‖f − u− v‖2L2 (3.10)

and
(u, v) ∈ BV (Ω)×Gµ(Ω). (3.11)

The set Gµ is the subset in G where ∀v ∈ Gµ, ‖v‖G 6 µ. Moreover, J∗ is
the characteristic function over G1 having the property that J∗ is the dual
operator of J (J∗∗ = J). Thus,
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Algorithm 1 BV −G Aujol's cartoon + textures decomposition algorithm.

Initialization: u0 = v0 = 0
while `max (|un+1 − un|, |vn+1 − vn|) 6 ε or a prescribed maximal number
of iterations is not reached' do
Compute vn+1 = PGµ(f − un)
Compute un+1 = f − vn+1 − PGλ(f − vn+1)

end while

Algorithm 2 ROF minimization by Split Bregman iterations.

u0 = f, d0
x = 0, d0

y = 0, b0x = 0, b0y = 0
while �Not converged� do

Update uk+1 by using Û = (λÎ − η<(∆̂))−1
[
λF̂ − η

(
div (dk − bk)

)∧]
Compute sk =

√
|∇xuk + bkx|2 + |∇yuk + bky |2

dk+1
x = max(sk − 1/η), 0)∇xu

k+bkx
sk

dk+1
y = max(sk − 1/η), 0)

∇yuk+bky
sk

bk+1
x = bkx +∇xuk+1 − dk+1

x

bk+1
y = bky +∇yuk+1 − dk+1

y

end while

J∗(v) =

{
0 if v ∈ G1

+∞ else.
(3.12)

The authors proved that the minimizers (ũ, ṽ) are also minimizers of the
original Meyer functional Eq. (3.8). The precited Chambolle's projectors
(denoted PGµ) are projectors over the sets Gµ. More details about these
projectors can be found in [18]. Algorithm. 1 resumes Aujol's decomposition
algorithm.

We recently [26] proposed another approach based on Bregman iterations
[27] to numerically solve the decomposition. Our idea is also based on the
duality principle but used in the reverse direction. If we write PROF (f, λ)
the minimizer of the ROF model (3.1), it can be e�ciently implemented
with Bregman iterations (see Algorithm. 2) then proposition 1 gives how we
can compute projections onto Gµ subsets (the proof of this proposition is
available in [26]). The overall Bregman based decomposition algorithm is
given by Algorithm. 3.
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Proposition 1 The function v ∈ Gµ which minimizes

J∗
(
v

µ

)
+ ‖f − v‖22 (3.13)

is given by

ṽ = f − PROF (f, 1/µ) (3.14)

Algorithm 3 Cartoon + textures decomposition algorithm based on Breg-
man iterations.
Initialisation: u0 = v0 = 0
while � Not converged� do
Update u by un+1 = PROF (f − vn, λ)
Update v by vn+1 = f − un+1 − PROF (f − un+1, 1/µ)

end while

3.1.3 Decomposition examples

Figure 3.1 presents two original images (Barbara, Building) used in our ex-
periments. Figures 3.2 and 3.3 illustrate the decomposition results. On each
test we see that the separation between structures and textures works well.
Some residual textures remain in the structures part; this can be explained
by the fact the parameter λ acts as a tradeo� between the �power� of sepa-
rability and too much regularization of u.

Figure 3.1: Original Barbara and Building images.
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Structures Textures

Figure 3.2: BV -G structures + textures image decomposition of Barbara
image.

Structures Textures

Figure 3.3: BV -G structures + textures image decomposition of Building
image.

3.1.4 The BV − Ḃ∞−1,∞ model

The G-norm being di�cult to handle, in [30] Meyer also proposed to replace
the space G by the Besov space Ḃ∞−1,∞ because G ⊂ Ḃ∞−1,∞ (in the following,

for simplicity, we will denote E = Ḃ∞−1,∞). The advantage is that the norm
of a function v over this space can be de�ned from its wavelet expansion.
The corresponding model proposed by Meyer is

F YM2
λ (u, v) = J(u) + λ‖v‖E (3.15)
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Algorithm 4 BV − Eµ cartoon + textures decomposition algorithm.

Initialization: u0 = v0 = 0
while `max (|un+1 − un|, |vn+1 − vn|) 6 ε or a prescribed maximal number
of iterations is not reached' do
Compute vn+1 = PEµ(f − un) = f − un −WST (f − un, 2µ)
Compute un+1 = f − vn+1 − PGλ(f − vn+1)

end while

In [5], Aujol and Chambolle proposed a numerical algorithm that uses the
space E. As previously, they reformulated the model by using a dual-method
approach, where Eµ is the subset of E, where ∀f ∈ Eµ, ‖f‖E 6 µ and B∗(f)
is the characteristic function over E1. Then the equivalent functional to
minimize is given by Eq. (3.16)

FACλ,µ (u, v) = J(u) +B∗
(
v

µ

)
+ (2λ)−1‖f − u− v‖2L2 . (3.16)

The existence of a projector on this space, denoted PEµ , was proven in [19]
and is de�ned by

PEµ(f) = f −WST (f, 2µ), (3.17)

where WST (f, 2µ) is the reconstructed image after a wavelet soft threshold-
ing of f with a threshold set at 2µ. The corresponding algorithm is given in
Algorithm 4.

Results obtained from this model are presented in Figures 3.4 and 3.5.

Structures Textures

Figure 3.4: BV -Eµ structures + textures image decomposition of Barbara
image.
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Structures Textures

Figure 3.5: BV -Eµ structures + textures image decomposition of Building
image.

This algorithm also works well, but its main drawback is that the texture
component captures some structures informations (like the legs of the table
in the Barbara image; see Figure 3.4). This behavior arises because E is
much bigger than G, in particular E contains functions that are not only
textures.

3.1.5 Other models

Some other models were proposed in the literature trying di�erent spaces
to replace BV or G. In [31], the authors replace G by the Sobolev space
H−1 while the authors of [5, 6] propose to replace BV by the smaller Besov
space B1

1,1, or G by some Hilbert spaces, which give the possibility to extract

textures with a certain directionality. In [28], the Besov space Ḃ1
1,∞ is used

instead of BV (the norms over these two spaces are equivalent) with the
L2 norm for the v part. Duals of John and Nirenberg spaces div (BMO),

˙BMO
−α

, and Sobolev spaces Ẇ−α,p to model the texture component are
studied in [29, 33].

3.2 Structures + textures + noise decomposition

The previous algorithms yield good results but are of limited interest for
noisy images (we add a Gaussian noise with σ = 20 on each test image of
Figure 3.1; the corresponding noisy test images can be viewed in Figure 3.6).
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Indeed, noise can be viewed as a very highly oscillating function (this means
that noise can be viewed as lying in G). Therefore, the algorithms extract
the noise in texture component and consequently the textures are corrupted
by noise (see Figure 3.7 for example).

Figure 3.6: Original Barbara and Building images corrupted by Gaussian
noise (σ = 20).

Structures Textures

Figure 3.7: BV -G structures + textures image decomposition of the noisy
Barbara image.

In the following, we present some extensions of two-component models into
three-component models, f = u + v + w, aiming to discriminate among
structures (u), textures (v), and noise (w).
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3.2.1 BV -G-G local adaptative model

In [22], we proposed an extension of the BV − G model to decompose an
image into three parts: structures (u), textures (v), and noise (w). As in
the u+ v model, we considered that structures and textures are modeled by
functions in BV and G respectively. Moreover, we assumed we have a zero
mean Gaussian noise added to the image. In our approach we viewed noise
as a speci�c high oscillating function. In virtue of Meyer's work [30], where
it is shown that the more a function oscillates, the smaller its G-norm, we
proposed to model w as a function in G and considered that its G-norm is
much smaller than the texture norm (‖v‖G � ‖w‖G). These assumptions
can be resumed by

v ∈ Gµ1 , w ∈ Gµ2 , where µ1 � µ2. (3.18)

To increase the e�ciency, we proposed to add a local adaptability behavior
to the algorithm following the idea proposed by Gilboa et al. in [20]. The
authors investigated the ROF model given by Eq.(3.1) and proposed a mod-
i�ed version able to preserve textures during the denoising process. This
approach consists to choose λ (the regularization parameter) as a function
λ(f)(x, y) which represents local properties of the image instead of a con-
stant. In a cartoon-type region, the algorithm enforces the denoising process
by increasing the value of λ while in a texture-type region, the algorithm de-
creases λ to attenuate the regularization in order to preserve texture details.
Then λ(f)(x, y) can be viewed as a smoothed partition between textured
and untextured regions.

Based on this idea we propose to use the following functional to decompose
an image into three parts:

F JGλ,µ1,µ2(u, v, w) = J(u)+J∗
(
v

µ1

)
+J∗

(
w

µ2

)
+(2λ)−1‖f−u−ν1v−ν2w‖2L2 ,

(3.19)
where functions νi represent the smoothed partition of textured and untex-
tured regions (and play the role of λ in Gilboa's paper).
In our approach, we chose ν1 and ν2 as complementary, ν2 = 1− ν1 : R2 →
]0; 1[. The choice of ν1 and ν2 is discussed after the following proposition,
which characterizes the minimizers of F JGλ,µ1,µ2(u, v, w).

Proposition 2 Let u ∈ BV , v ∈ Gµ1, and w ∈ Gµ2 be the structure, tex-

ture, and noise parts, respectively, and f the original noisy image. Let the
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Algorithm 5 BV −G−G cartoon + textures + noise decomposition algo-
rithm.
Initialization: u0 = v0 = w0 = 0
Compute ν1 and ν2 = 1− ν1 from f
while `Not converged' do

Compute wn+1 = PGµ2

(
f−un−ν1vn

ν2+κ

)
, (κ is a small value in order to

prevent division by zero)

Compute vn+1 = PGµ1

(
f−un−ν2wn+1

ν1+κ

)
Compute un+1 = f − ν1vn+1 − ν2wn+1 − PGλ(f − ν1vn+1 − ν2wn+1)

end while

functions (ν1(f)(., .), ν2(f)(., .)) be de�ned on R2 →]0; 1[, and assume that

these functions could be considered as locally constant compared to the vari-

ation of v and w. Then the minimizers de�ned by

(ũ, ṽ, w̃) = arg
(u,v,w)∈BV×Gµ1×Gµ2

minF JGλ,µ1,µ2(u, v, w), (3.20)

are given by

ũ = f − ν1ṽ − ν2w̃ − PGλ(f − ν1ṽ − ν2w̃), (3.21)

ṽ = PGµ1

(
f − ũ− ν2w̃

ν1

)
, (3.22)

w̃ = PGµ2

(
f − ũ− ν1ṽ

ν2

)
, (3.23)

The proof of this proposition can be found in [22]. As in the two-part BV -G
decomposition model, we got an equivalent numerical scheme as depicted in
Algorithm. 5.

Concerning the choice of the νi functions, we were inspired by the work
in [20]. The authors chose to compute a local variance on the texture +
noise part of the image obtained by the ROF model (f − u). In our model,
we use the same strategy but on the v component obtained by the two
parts decomposition algorithm. This choice is guided by the fact that the
additive Gaussian noise can be considered as orthogonal to textures. As a
consequence, the variance of a textured region is larger than the variance of
an untextured region.
In practice, we �rst compute the two-part decomposition of the image f . On
the texture part, for all the pixels (i, j), we compute the local variance on a
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Figure 3.8: Texture partition ν1 obtained by local variance computation.

small window (odd size L) centered on (i, j). At the end, we normalize this
variance image to obtain values in ]0; 1[. All details about the computation
of the νi functions can be found in [22]. Figure 3.8 shows an example from
the noisy Barbara image. As expected, the variance is higher in the textured
regions and lower in the others.

Figures 3.9 and 3.10 show the results of the u+v+w decomposition obtained
by the BV -G-G local adaptive model. This model can separate noise from
textures. If we look more precisely, we can see that some residual noise
remains in textures, and some textures are partially captured in the noise
component. This is related to the choice of λ, µ1, and µ2 which �x the
separability power of the algorithm.

3.2.2 Aujol-Chambolle BV -G-E model

At the same time, in [5] Aujol et al. addressed the same structures + textures
+ noise decomposition problem. They proposed a model close to ours but
with a main di�erence in that the noise is considered as a distribution and
living in the Besov space E = Ḃ∞−1,∞. Their corresponding functional is
given by Eq. (3.24).

FAC2
λ,µ,δ(u, v, w) = J(u)+J∗

(
v

µ

)
+B∗

(w
δ

)
+(2λ)−1‖f−u−v−w‖2L2 , (3.24)

where u ∈ BV , v ∈ Gµ, and w ∈ Eδ as de�ned previously. The numerical
algorithm is given by Algorithm. 6.
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Structures Textures

Noise

Figure 3.9: BV -G-G structures + textures + noise image decomposition of
Barbara image.

Algorithm 6 BV −G−E cartoon + textures + noise decomposition algo-
rithm.
Initialization: u0 = v0 = w0 = 0
while `Not converged' do
Compute wn+1 = f − un − vn −WST (f − un − vn, 2δ)
Compute vn+1 = PGµ(f − un − wn+1)
Compute un+1 = f − vn+1 − wn+1 − PGλ(f − vn+1 − wn+1)

end while

Results of this algorithm on our test images are shown in Figures 3.11 and
3.12, respectively. We can see that textures are better denoised by this
model. This is a consequence of a better noise modeling by distributions
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Structures Textures

Noise

Figure 3.10: BV -G-G structures + textures + noise image decomposition of
Building image.

in the Besov space. But the residual texture is more important than the
one given by our algorithm in the noise part. Another drawback appears in
the structure part; the edges in the image are damaged because some im-
portant wavelet coe�cients are removed. In my Ph.D., I tested to add the
local adaptivity behavior of the BV -G-G model to the BV -G-E model. This
modi�ed version shows little improvements compared to the original model.
We prefered to explore the replacement of wavelets by recent geometric mul-
tiresolution expansions like contourlets.
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Structures Textures

Noise

Figure 3.11: BV -G-E structures + textures + noise image decomposition of
Barbara image.

3.2.3 The BV -G-Ċo
∞
−1,∞ decomposition model

Recent directional multiresolution tools, such as curvelets or contourlets,
exhibit very good results in denoising. They also better reconstruct edges
in an image. Then the idea to replace wavelets by curvelets or contourlets
in Aujol et al. model naturally arose. We focused our choice on contourlets
but in fact all directional multiresolution expansions can be used in the same
way. This is equivalent to change the Besov space in the model described in
the previous subsection by an homogeneous contourlet space Ċo

∞
−1,∞ (in fact,

it is an anisotropic Besov space). Then, the equivalent functional providing
the decomposition is given in Eq.(3.25).
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Structures Textures

Noise

Figure 3.12: BV -G-E structures + textures + noise image decomposition of
Building image.

FCoλ,µ,δ(u, v, w) = J(u)+J∗
(
v

µ

)
+J∗Co

(w
δ

)
+(2λ)−1‖f−u−v−w‖2L2 , (3.25)

where J∗Co(f) is the characteristic function over the set Co1 if we denote

Coδ =
{
f ∈ Co∞−1,∞/‖f‖Co∞−1,∞

6 δ
}
(norms over contourlet spaces can be

de�ned in the same way as Besov norms from the contourlet coe�cients, see
[23] for more details).

The corresponding numerical scheme is the same as in the BV -G-E algo-
rithm, except that we replace the wavelet expansion by the contourlet ex-
pansion in the soft thresholding. It is depicted in Algorithm. 7 (CST stands
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Algorithm 7 BV −G− Ċo∞−1,∞ cartoon + textures + noise decomposition
algorithm.

Initialization: u0 = v0 = w0 = 0
while `Not converged' do
Compute wn+1 = f − un − vn − CST (f − un − vn, 2δ)
Compute vn+1 = PGµ(f − un − wn+1)
Compute un+1 = f − vn+1 − wn+1 − PGλ(f − vn+1 − wn+1)

end while

for the Contourlet Soft Thresholding).

Figures 3.13 and 3.14 show the obtained results by replacing wavelets by
contourlets. The advantage of using geometric frames is in that it better
preserves the integrity of edges and oriented textures.

3.3 Theoretical analysis

In this section I will give some theoretical results we got which permit to
characterize the solutions of the decomposition model. In order to do this
analysis, we rewrite the decomposition model slightly di�erently than in the
previous sections. Let us assume that we are given an image f ∈ L2(R2) and
two positive parameters λ et µ. Then we seek to decompose f as a sum

f = u+ v + w (3.26)

by minimizing the functional E(u, v, w) de�ned by

‖u‖BV + λ‖v‖2L2 + µ‖w‖G. (3.27)

In this model, u is the cartoon part, w the textures and v the residual com-
ponent. The ROF model corresponds to the case µ = +∞. As BV ⊂ L2,
we necessarily have w ∈ L2. The existence of an optimal decomposition is
given by the �Hilbert's direct method�. Since BV is a dual space, from every
bounded sequence uj ∈ BV we can extract a subsequence that converges, in
the distributionnal sense, to u ∈ BV . The same argument can be used for
L2 and G. The uniqueness is not ensured except for the v part. In my Ph.D.,
we proved Theorem. 1 which aims to characterize minimizers of Eq. (3.27)
accordingly to the choice of λ and µ.
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Structures Textures

Noise

Figure 3.13: BV -G-Co structures + textures + noise image decomposition
of Barbara image.

Theorem 1 If ‖f‖G 6 1
2λ and ‖f‖BV 6 µ

2λ , then u = w = 0 and the opti-

mal decomposition is f = 0 + f + 0.

If ‖f‖G 6 1
2λ but ‖f‖BV > µ

2λ , three cases appear for an optimal decomposi-

tion f = u+ v + w.

(1) u = 0, ‖v‖BV = µ
2λ , ‖v‖G <

1
2λ and 〈v, w〉 = µ

2λ‖w‖G,

(2) w = 0, ‖v‖BV 6 µ
2λ , ‖v‖G = 1

2λ and 〈u, v〉 = 1
2λ‖u‖BV and �nally,
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Structures Textures

Noise

Figure 3.14: BV -G-Co structures + textures + noise image decomposition
of Building image.

(3) ‖v‖BV = µ
2λ , ‖v‖G = 1

2λ , 〈u, v〉 = 1
2λ‖u‖BV and 〈v, w〉 = µ

2λ‖w‖G.

Conversely, all triplet (u, v, w) which ful�lls (1), or (2), or (3) is optimal for

f = u+ v + w and their corresponding values of λ and µ.

The proof and more details about this theorem are available in [25].

An interesting application of this theorem is the following: let us assume
that we deal with long and thin objects in an image. This kind of object can
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be modeled by

f(x1, x2) = 1 if 0 6 x1 6 L and 0 6 x2 6 ε (3.28)

where L � 1 and 0 < ε � 1. Then ‖f‖G 6 ε while ‖f‖BV = 2(L + ε).

It is easy to see that we are in the case 1 of Theorem. 1 if ε <
√

π
λµ and

µ < 4λ(L+ ε) i.e if L is rather large compared to µ.

By Theorem 1, we conclude that u = 0, ‖v‖BV = µ
2λ . Then we have

‖w‖BV > ‖f‖BV − ‖v‖BV > 2(L + ε) − µ
2λ which is high. In this case,

the w part is the most important one. This means that this kind of objects
will be attracted in the w component.

This property was used in [21, 25] as a preprocessing stage in an aerial road
networks detection. Indeed, road networks could be considered as long and
thin objects in the image. The previous result teaches us that this kind of
objects will be enhanced in the texture component (but u is not strictly equal
to 0 and w does not contain only roads because the original image contains
di�erent kind of objects). So we decompose the image and then apply a
detection algorithm on the w component. Figure 3.15 shows the constrast
enhancement of roads in the w component on a zoomed portion of an aerial
image. We clearly see that roads are the most visible objects in the texture
component. Figure 3.16 shows the result we get, on a bigger image by this
approach with a very simple detection algorithm (it is a combination of an a

contrario segment detection algorithm and active contours, see [21] for more
details) applied on the w component.

In the following, I present new (submitted in June 2012) results: two useful
lemma which help to prove a �nal theorem.

Lemma 1 Let E be a function space, ‖.‖E its norm which we assumed to

be translation invariant (BV,Lp, . . .), let ∆j be a Littlewood-Paley �lter as-

sociated to function ψ . Then for all function f ∈ E we have

‖∆j [f ]‖E 6 C‖f‖E where C = ‖ψ‖L1 (3.29)

This lemma only said that the energy, in the E−norm sense, of the �ltered
version of a function f is lower than the energy of f itself.

The next lemma gives an equivalency between the BV and L1 norms of
functions of compactly supported spectrum.
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Figure 3.15: Example of a portion of an aerial image: original image on left,
w component on right which lets appear enhanced roads.

Lemma 2 If f̂ is compactly supported by R 6 |ξ| 6 3R with R � 1 then

‖f‖BV ≈ R‖f‖L1.

The next theorem shows that it is possible to extract a speci�c texture from
an image by properly choosing λ, µ and the right �lter to apply on the texture
component. Let us consider an image f(x) = a(x) + b(x) cos(ω1x + ϕ1) +
c(x) cos(ω2x+ ϕ2) where a, b, c are C1 compactly supported functions.

Theorem 2 If f(x) = a(x) + b(x) cos(ω1x + ϕ1) + c(x) cos(ω2x + ϕ2) and

if we assume 1 6 λ � |ω1| � µ
λ � |ω2| then, for a given scale j and ∆j

its corresponding Littlewood-Paley �lter, the decomposition f = u + v + w
veri�es

‖∆j [w](x)− c(x) cos(ω2x+ ϕ2)‖L1 6 ε = C
µ

λ|ω2|
. (3.30)

This theorem is interesting in the way that it proposes some directions to op-
timaly separate di�erent textures by a combination of image decomposition
and band-pass �ltering. In an upcoming paper [24], based on this theorem,
we proposed a multiscale texture separation (MTS) algorithm: We compute
the cartoon + texture decomposition and �nally apply the Littlewood-Paley
operator to accurately extract the most oscillating textures. Let denote
wj = ∆j [w]. The lower oscillating counterpart is obtained by substracting
wj+1 from the input image fj . In the sequel we denote fj+1 = fj − wj+1,
then a single scale texture separation block can be depicted as in Fig. 3.17.
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This process can be iterated to reach a multiscale texture separation algo-
rithm (at each scale we set µj+1 = µj/2) as in Fig. 3.18. We can add a
directional capacity to this algorithm by considering only portions of each
dyadic shell. This idea was previously used in the construction of curvelet
frames by Candès et al. [10, 11, 12]. Then we can build a directional �l-
ter bank following the construction of the curvelets and, instead of applying
only one �lter to the texture part, we apply this bank of �lters to get the
di�erent textures corresponding to each direction. This process corresponds
to modify the initial single texture separation block shown in Fig. 3.17 into
a directional single texture separation block as depicted in Fig.3.19 where
∆θl
j represents the Littlewood-Paley �lter associated with direction θl. The

decomposition obtained from the input image presented in Fig. 3.20 is given
on Fig. 3.21 and Fig. 3.22.
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Figure 3.16: Example of road network detection: original image on top,
detected roads on bottom.
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Chapter 4

Imaging through turbulence

This chapter presents recent restoration work for imaging through turbulent
atmosphere. I started to work on this topic when I was at the DGA as the
french representative to a NATO Research Task Group about the model-
ing of active imaging systems. Such long range systems are dedicated to
observation at several kilometers. The main limiting factor, in terms of res-
olution, is the atmospheric impact and notable turbulence. It results in two
main visual defects: random geometric distortions and blur. Fig. 4.1 shows
some examples obtained by a camera in real conditions. For each video we
arbitrarily chose three frames to display here.

A pioneering work on turbulence modeling for mitigation algorithms was
done by Frakes [10, 12]. The authors modeled the turbulence phenomenon
using two operators:

fi(x) = Di(H(u(x))) + noise (4.1)

where u is the static original scene we want to retrieve, fi is the observed
image at time i,H is a blurring kernel, andDi is an operator which represents
the geometric distortions caused by the turbulence at time i. Based on
this model, in [14] we proposed a method to evaluate H−1 and D−1. The
H−1 operator is obtained by blind deconvolution, while the correction of the
geometrical distortions D−1 is computed by an elastic registration algorithm
based on di�eomorphic mappings (taking the inverse of D can be viewed as a
stabilization problem). This approach gives good results, but it has two main
drawbacks. Firstly, it is time consuming to perform the calculations due to
the two iterative processes involved in the algorithm. Secondly, performances
are sensitive to the choice of the parameters and this results in an unstable
algorithm.

49
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Figure 4.1: Sample images. Each row contains three arbitrary frames from
di�erent testing turbulence videos.

In the remainder of this chapter, I present new investigations on elastic
stabilization and a deblurring approach based on physics electromagnetic
wave propagation equations.

4.1 Elastic stabilization

4.1.1 Model and algorithm

In this section we only deal with the geometric distortions of the image and
do not consider any deblurring aspects. If we denote the observed image
sequence as {fi}i=1,...,N and the true image that needs to be reconstructed
as u, we model the deformations as

fi(x) = u(φi(x)) + noise, ∀i (4.2)

where φi corresponds to the geometric deformation on the i-th frame (note
that the φi are the deformations between the true image and the observed
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Figure 4.2: The model of deformation used in this paper.

frame i and not the continuous movement �ow from frame to frame, see
Fig. 4.2).
If we �x φi, u(·) → u(φi(·)) can be treated as a linear operator on u, so we
can write the right hand side of (4.2) as

u(φi(·)) = (Φiu)(·) (4.3)

where Φi is the linear operator corresponding to deformation φi, then (4.2)
becomes

fi = Φiu+ noise, ∀i (4.4)

which gives the �delity equations in the model.
On the other hand, it is reasonable to assume that our image has certain
regularization features. If we denote the regularization term of the image as
J(u), then we can formulate the stabilization problem as

min
u,φi

J(u) +
λ

2

N∑
i=1

‖Φiu− fi‖22 (4.5)

The regularization term of u, J(u), has many di�erent choices. Most notably,
total variation based optimization [28] has been successful for edge preserv-
ing regularization. More recently, the nonlocal means regularization model
[5, 13] has been introduced which modi�es the intensity of a pixel by con-
sidering the nearby pixel values with similar patterns. Its basic assumption
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is that a natural image contains repeating structures instead of repeating
pixels; this makes the nonlocal approach capable of preserving important
detailed features in an image. Based on these reasons, we decided to utilize
the nonlocal regularization. A detailed introduction of this regularization
method and its numerical implementation can be found in [13].
The kind of model (4.5) can be solved by the alternative optimization method,
i.e. optimizing over di�erent variables (u and φi) alternatively. In our model
(4.5), if we have a good guess on u, then the optimal φi can be estimated by
(4.2) via certain optical �ow algorithms (e.g. methods developed in [3, 4, 29]).
On the other hand, for �xed {φi} the model (4.5) can be e�ciently solved
as a constrained problem by using Bregman Iteration [27].
In our implementation we combine the updating step by optical �ow for Φi

into the Bregman updating loop, following [17]. The overall algorithm is
resumed on Algorithm 8.

Algorithm 8 The Alternative Optimization Algorithm

Initialize: Start from some initial guess u. Let f̃i = fi.

while
∑

i ‖Φiu− fi‖2 not small enough do

Estimate Φi which maps u onto fi from (4.2) via optical �ow
scheme.

while
∑

i ‖Φiu− f̃i‖2 not converge do

v ← u− δ
∑

i Φ>i (Φiu− f̃)

u← arg minu J(u) + λ
2δ‖u− v‖

2

end while

f̃i ← f̃i + fi − Φiu.

end while

The initial guess for u is chosen as the temporal average of the frames;
Fig. 4.3 shows an example. We can see that the average of the frames is
very blurry but gives a good initial guess of the rough shape of the object.
In our numerical experiments we use less than 100 frames and generally we
can obtain satisfactory results with only 10 frames.

There are two parameters in our algorithm: δ and λ; δ is the step size for the
gradient descent of the �delity term. As shown in [9], the step size should
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Figure 4.3: The average of the frames of one example video and its magni�-
cation of the top right corner.

be chosen such that u → u − δ
∑

i Φ>i (Φiu − f̃) is contractive to achieve
the convergence. The parameter λ is not a crucial factor and numerical
results also indicate that the algorithm is not sensitive to the choice of λ. In
practice we suggest a small initial λ to make the image regular enough at the
very beginning, then increase λ gradually. This method is also used in other
image reconstruction methods, e.g. [1]. More details about the numerical
implementation are available in [26].

4.1.2 Experiments

In Figs. 4.4, 4.5 and 4.6 some frames taken from real videos are shown, as
well as magni�ed details. Our reconstruction results are shown in the last
column. Only �ve iterations are implemented in our algorithm to get this
satisfactory result (especially in Fig. 4.6 where the medium sized letters on
the board are much more readable in the processed image than in the origi-
nal frames).

In order to evaluate the in�uence of the optical �ow algorithm, we tried two
di�erent methods [3, 4]. The Black-Anandan approach gives accurate opti-
cal �ow estimation but is time consuming while the classical Lucas-Kanade
optical �ow algorithm is faster. Various experiments show that the obtained
results are very similar with both schemes and then our restoration algo-
rithm is not sensitive to the choice of the optical �ow method.

We also studied the impact in the choice of J(u) by experimenting other
regularization terms like usual TV and sparsity in some frame expansions



54 CHAPTER 4. IMAGING THROUGH TURBULENCE

(like framelets or curvelets). The di�erent tests show very small di�erences
between the use of these regularizers. NLTV has real interest in the case of
textured images, otherwise classic (and faster to compute) J(u) can be used.

Figure. 4.7 shows a comparison between results obtained using our method
and two other state of the art methods: the algorithm based on PCA [23] and
the algorithm using the Lucky-Region Fusion [2]. In these tests, we deal with
short exposure sequences; it is not surprising that the PCA method failed as
in this case the assumption of a Gaussian kernel for the blur is not correct.
The Lucky-Region Fusion approach gives some good results but our method
shows a better geometry reconstruction (see, for example the high spatial
frequencies in the second row, the separation between each bar is clearer in
our results). The other advantage of our algorithm is that it requires only a
few frames to get good results, compared to 100 frames which were used in
the Lucky-Region Fusion.

Figure 4.4: The �rst two columns are example input frames and magni�ca-
tions of the right part of the frames. The last column shows our reconstructed
result.
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Figure 4.5: The �rst three rows are example input frames and the magni�ca-
tion of the top right part of the frames. The last row shows our reconstructed
result.

Figure 4.6: The �rst two panels are example frames. The last panel is our
reconstructed result. Only 10 frames are used in this example.

4.2 Atmospheric deblurring

The preceeding section presented the algorithm we built to correct the geo-
metric distortions, e.g. inversing operator Di in model (4.1). In this section
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Figure 4.7: Results obtained with di�erent algorithms: our method on left,
the PCA based approach in the middle and the Lucky-Region Fusion on the
right.

we address the problem of inversing H by an original deconvolution approach
[15]. The originality of our approach comes from the use of an atmospheric
kernel which models the blur impact of atmospheric propagation. Next we
de�ne this kernel formulation and then use it in a framelet based deconvo-
lution algorithm.

4.2.1 Fried kernel

In order to deconvolve an image, two methods are mainly proposed in the
literature. The �rst one is to assume that the blur kernel is unknown and
to use some blind deconvolution algorithm but in the general case it is a
di�cult problem and the community remains very active on this approach.
The second one is to �nd some analytic expressions which model the blur-
ring e�ect of the atmosphere. Surprisingly, this model exists since . . . 1966!
David Fried (well known in the optics community) proposed in [11] an an-
alytical formulation to model the Modulation Transfer Function (MTF) of
the atmosphere. His work was recently revisited by D. Tofsted in [30] and
some experiments based on �eld trials showed the e�ectiveness of this MTF



4.2. ATMOSPHERIC DEBLURRING 57

to model real phenomena [6].

Based on [11, 30], the Fried kernel can be viewed as the product of two
terms. One e�ect, M0, corresponds to the imaging system plus atmosphere
MTFs, when turbulence is negligible. The second, MSA, also called the
short-term exposure MTF, models the impact (in term of blur) of phase-tilt
due to turbulence. Denoting by ω the spatial frequency (in 2D we consider
an isotropic kernel and ω is the frequency modulus),M0(ω) can be expressed
by

M0(ω) =

{
2
π

(
arccos(ω)− ω

√
1− ω2

)
ω < 1

0 ω > 1
(4.6)

and MSA(ω) is given by

MSA(ω) = exp
{
−(2.1X)5/3(ω5/3 − V (Q,X)ω2)

}
(4.7)

If we denote

• D: system entrance pupil diameter (we recall from geometrical optics
rules that D = f/N where f is the focal length and N the optics
F-number),

• L: path length (distance from the sensor to the observed scene),

• λ: wavelength,

• C2
n: refractive index structure representing turbulence magnitude of

the atmosphere [31],

we can de�ne the following quantities: k = 2π
λ , the coherence diameter r0

de�ned by r0 = 2.1ρ0 where ρ0 = 1.437(k2LC2
n)−3/5 (coherence length),

P =
√
λL, Q = D

P , X = D
r0
.

Finally, the quantity V (Q,X) is de�ned as follows

V (Q,X) = A+
B

10
exp

{
−(x+ 1)3

3.5

}
(4.8)

where x = log10(X), q = log2(Q) and

A =


0.840 + 0.116Σqa with qa = 1.35(q + 1.50)

if q < −1.50

0.840 + 0.280Σqc with qc = 0.51(q + 1.50)

if q > −1.50

(4.9)
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and Σq = eq−1
eq+1 . The coe�cient B is de�ned by

B = 0.805 + 0.265Σqb with qb = 1.45(q − 0.15) (4.10)

Finally, in the Fourier domain, Fried MTF (MF (ω)) is the product ofM0(ω)
and MSA(ω):

MF (ω) = M0(ω)MSA(ω) (4.11)

Practically, this kernel only depends on four parameters: D,L, λ and C2
n.

The three �rst clearly depend on the acquisition system and the observed
scene. The last parameter, C2

n represents the turbulence magnitude and,
according to measurement, [31], is generally in the range 10−16m−2/3 to
10−12m−2/3 corresponding respectively to weak and strong turbulence.

4.2.2 Nonblind Fried deconvolution

Equiped with the Fried kernel, we can use a nonblind deconvolution algo-
rithm. In our work [15], we proposed to use a framelet based deconvolution
method proposed by Cai et al. in [7, 8]. This algorithm aims to �nd the im-
age ũ which has a sparse representation in a framelet expansion. We denote
D and DT the framelet decomposition and framelet reconstruction operators,
respectively (see [8] for more details). Following the framelet properties we
have DTD = I (tight frame) where I stands for the identity. Denoting g the
acquired blurred image, MF the known Fried kernel (here we assume that
all parameters are known), the nonblind Fried deconvolution is achieved by
�nding ũ which minimizes the following functional

ũ = arg min ‖Du‖1 +
µ

2
‖MF ? u− g‖22 (4.12)

To solve this minimization problem, we set d = Du (the framelet expansion
of u) and we use the split Bregman iteration (see [16] for details):

uk+1 = arg min µ
2‖MF ? u− g‖22 + η

2‖d
k −Du− bk‖22

dk+1 = arg min ‖d‖1 + η
2‖d−Du

k+1 − bk‖22
bk+1 = bk +Duk+1 − dk+1

(4.13)

Updating for uk+1 is a classical L2 minimization problem while it as been
shown that solving for dk+1 is equivalent to use the shrinkage operator:

dk+1 = shrink(Duk+1 + bk, 1/η) = sign(u) max(0, |u| − 1/η) (4.14)
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Figure 4.8: Nonblind Fried deconvolution on real barchart. The original
images are on top, the deconvolved ones on bottom. The �rst column uses
an original acquired image as input while a stabilized one is used on the
second column.

In Fig. 4.8, 4.9, we test the nonblind Fried deconvolution on real images
acquired during ground test �eld experiments made for turbulence charac-
terization by the NATO group TG40 in 2005. The interesting fact is that
the C2

n coe�cient were measured during each image acquisition. Here, mea-
sured C2

n values are 1.51×10−13m−2/3 for Fig. 4.8 and 1.91×10−13m−2/3 for
Fig. 4.9, the observed panels were at a distance L = 1km, the pupil diameter
of the system was D = 0.05m and the system works in the visible spectrum
(λ ≈ 700nm). Framelet parameters are set to µ = 1000, η = 10 and only two
iterations were performed (experiments show that this choice gives the best
visual improvements). The top row shows input images while the bottom
one shows deconvolved images ũ. The �rst column corresponds to directly
consider an observed image while the second column uses a stabilized image
obtained by the method presented in the previous section. We can see great
improvements, particularly in the edge sharpness and the readibility of the
letter board.
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Figure 4.9: Nonblind Fried deconvolution on real letter board. The original
images are on top, the deconvolved ones on bottom. The �rst column uses
an original acquired image as input while a stabilized one is used on the
second column.

In [15], we studied the in�uence of each parameter and we found that only
large errors on the parameters reduce the restoration e�ciency (details like
textures are not well reconstructed). In practice, this parametric study gives
us promising news because it appears that, even if the parameters are un-
known, coarse approximations should be su�cient to get an improved de-
convolved image.

4.2.3 Semiblind Fried deconvolution

If it seems reasonable to assume that parameters D,L and λ could be known
in practice, the C2

n parameter is more di�cult to handle as it depends on
the atmospheric behavior and is not constant. In [15], we considered the
case where C2

n is unknown and needs to be estimated from the acquired
blurred image f . From the previous parametric analysis, we observe that
if C2

n is under-estimated then the restored image ũ remains blurred; if it is
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Figure 4.10: TV (C2
n) curves corresponding to di�erent blurry cases.

over-estimated, ũ is too much regularized: many details are removed and the
edges are over sharpened. This behavior naturally recalls the total variation
(TV ) de�ned by TVu =

∫
Ω |∇u|. Indeed in the case of a blurred image, TV is

weak because the image gradients are over-smoothed while in the case of an
over-regularized image (even if the gradients have more amplitude) the to-
tal amount of gradients decreases. Then it seems natural to expect that TV
must be maximum (with respect to the choice of C2

n) for a correct restoration.
We easily veri�ed this behavior by simulating a set of di�erent blurred images
by �xing some C2

n values. Then for each case, we computed the set of decon-
volved images ũ(C2

n) for every C2
n choosen in an appropriate range linearly

sampled which covers the typical physical range values. Then we can com-
pute the normalized curves TVũ(C2

n) for each case. Fig. 4.10 shows the corre-
sponding curves for cases C̃2

n = {1×10−14; 5×10−14; 10×10−14; 20×10−14}
m−2/3. As expected, the position of TV (C2

n)'s maximum corresponds to a
good estimate of the real C2

n.

In practice, it is too expensive to compute the whole TV (C2
n) curve (one

deconvolution per C2
n value is needed). We proposed to speed up the estima-

tion process by computing a limited, NC2
n
, equidistant number of points on

the curve and we used a polynomial approximation of the complete curve to
�nally deduce the optimal C2

n. The semiblind Fried deconvolution consists
to add this step to the previous nonblind algorithm and is resumed in Algo-
rithm. 9. Figures 4.11 and 4.12 show the results we get with this semiblind
Fried deconvolution. A comparison between measured and estimated C2

n is
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Figure 4.11: Semiblind Fried deconvolution on real barchart. The original
images are on top, the deconvolved ones on bottom. The �rst column uses
an original acquired image as input while a stabilized one is used on the
second column.

provided in [15] and shows that the estimation process performs well.

Algorithm 9 Semiblind Fried deconvolution

- D,L, λ are known. Fix the regularization parameters µ, η.
- Compute the prescribed equidistant NC2

n
points (typically ten points) of

the TV (C2
n) curve for a range C2

n ∈ [C2
n,min, C

2
n,max].

- Find the polynomial approximation by least square minimization.
- Estimate C̃2

n from the maximum of the polynomial approximation.
- Build the Fried kernel MF (ω) corresponding to the known parameters
and C̃2

n.
- Use the framelet nonblind deconvolution algorithm with MF (ω) to �nd
the �nal restored image ũ.
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Figure 4.12: Semiblind Fried deconvolution on real letter board. The original
images are on top, the deconvolved ones on bottom. The �rst column uses
an original acquired image as input while a stabilized one is used on the
second column.
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Chapter 5

Infrared imaging

This chapter presents di�erent investigations related to infrared (IR) imaging
that began when I was at the DGA and continue today. My contributions
concern two di�erent topics: the non-uniformity correction in raw uncooled
infrared cameras and the design of an evaluation methodology to assess per-
formances of infrared Automatic Target Detection/Recognition and Tracking
(ATD/ATR/ATT) algorithms.

5.1 Non-uniformity correction

Infrared (IR) imaging has proved to be a very e�cient tool in a wide range
of industry, medical, and military applications. IR cameras are used to mea-
sure temperatures, IR signatures, detection, etc. However, the performance
of the imaging system is strongly a�ected by a random spatial response of
each pixel sensor. Under the same illumination the readout of each sensor is
di�erent. This is due to mismatches in the fabrication process, among other
issues [6]. Furthermore for uncooled cameras the problem is even worse be-
cause the sensor response non-uniformity is not stationary and slowly drifts
in time. For this kind of camera a periodic update of the non-uniformity-
correction (NUC) is required.
A good non-uniformity-correction is a success factor key for any post pro-
cessing such as pattern recognition, image registration, etc. To get rid of the
non-uniformity, two main kinds of methods have been developed:

• Calibration based techniques consist in an equalization of the response
to an uniform black body source radiation. They are not convenient
for real time applications, since they force to interrupt the image �ow.

67
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(This calibration is usually automatic, a shutter closing in front of the
lens periodically).

• Scene based techniques, involving motion compensation or temporal
accumulation. Such methods are complex and require certain observa-
tion conditions.

The perturbation model is

zt(X) = f(X,t)(u0t(X)) + ηt(X)

where (X is the position and t is the time for the following) zt(X) is the
observed value, u0t(X) is the ideal landscape, f(X,t) is the (unknown) trans-
fer function of the sensor, and ηt(X) is a random sensor Poisson noise. A
non-uniformity correction algorithm aims at discovering f(X,t) or u0t(X) for
each X and t. In [21], we propose a single frame based algorithm and show
that motion compensation or accumulation algorithms are not necessary to
achieve a good image quality. However, the proposed method can be viewed
as a �rst step fostering the success of more sophisticated motion based cor-
rection algorithms. These are slow while the proposed algorithm is real time,
and the obtained quality after a single frame correction is su�cient for many
uses.

5.1.1 Anterior work

Numerous algorithms have been reported in the literature to remove the
�xed-pattern-noise caused by the lack of a cross-column sensor equalization.
Some algorithms estimate the sensor parameter and others attempt at re-
covering the true landscape. Most of them use a simpli�ed (linear) model
for the transfer function of the pixel sensor:

zt(X) = u0t(X)gt(X) + bt(X) + ηt(X),

where X, t, zt(X), u0t(X) are de�ned as previously; gt(X) and bt(X) are
the gains/ o�sets (in place of f(X,t)) and ηt(X) is the random noise (never-
theless, the true transfer function is non linear). These algorithms process a
sequence of images (zt)t∈1,...,N , not a single frame. The proposed algorithm
uses no registration, hence we will focus on single frame algorithms. There
are methods [14] suggesting to equalize the mean and the standard deviation
of each pixel sensor by a linear transform. But this is only possible if there is
a long camera sequence with enough motion where each sensor sweeps many
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di�erent parts of the scene. A variant [16] adjusts the minimum and the
maximum of the readout values, assuming the time histograms observed in
each sensor to become equal over a long enough time sequence. This last
method is called Constant Range [22]. As pointed out by several authors
[13] the length N of the sequence is a crucial factor of success here. Two
problems may arise:

• If N is too small then the estimation is wrong because all sensors have
not seen the same landscape;

• If N is too large and because of the approximation bias and time drift
of the sensor behavior, the previous images may appear as ghosts in
the last ones. This undesirable e�ect is known as �ghost artifact�.

There is a way to avoid the ghost artifacts [13], which consists in a reset of
the estimation when the scene changes too much. But again, all this requires
a long exposition time with a varying scene or a serious camera motion.

5.1.2 Midway infrared correction (MIRE)

The midway histogram equalization method

The midway algorithm was initially designed to correct for gain di�erences
between cameras [7]. It permits to compare two images taken with di�erent
cameras more easily after their histograms have been equalized. This algo-
rithm was later extended to �icker correction [8].
Consider two cumulative histograms H1, H2. The midway cumulative his-
togram of the corrected image is simply

Hmid−1 =
H−1

1 +H−1
2

2
,

and this average can be extended to an arbitrary number of images. Once
the midway histogram is computed, a monotone contrast change is applied
to image to specify H as its histogram. Thus, all images get the midway
histogram, which is the best compromise between all histograms (see Fig
5.1).

Our approach for infrared images

Since many IR correction algorithms actually propose to equalize the tem-
poral histograms of each pixel sensor, the midway is quite adapted to get a
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Figure 5.1: Two histograms h1, h2 (on top) and the corresponding midway
histogram h (on bottom), compared to the direct histogram average h3,
which would create two modes and is therefore wrong.

better result than a simple equalization. We propose a still much simpler
strategy. Equalization can be based on the fact that single columns (or lines,
depending of the readout system) carry enough information by themselves
for an equalization. The images being continuous, the di�erence between
two adjacent columns is statistically small, implying that two neighboring
histograms are nearly equal. So the proposition is to transport the histogram
of each column (or line) to the midway of histograms of neighboring columns
(resp. lines). In presence of strong �xed-pattern-noise (FPN) it will be useful
to perform this sliding midway method over a little more than two columns,
because the FPN is not independent in general. Assuming that the equal-
ization is performed with columns, the proposed algorithm is resumed in
Algorithm. 10.

The choice of the Gaussian standard deviation σ depends only on the camera,
and not on the landscape. Thus, it can be �xed once and for ever for each
camera. Since we work on separated images, the method is not a�ected by
motions or changes of scene, which completely avoids "ghost artifacts" and
any problem caused by the calibration parameters drifting over time. An
automatic method to obtain a good σ is proposed hereafter.
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Algorithm 10 Midway Infrared Equalization (MIRE).

Compute the cumulative histogram Hi of each column ci;
For each column ci compute a local midway histogram H̃mid(i)

−1 :=∑
Φ

j∈(−N,...,N)
(j)H−1

i+j using Gaussian weights Φ = Φσ with standard devi-

ation σ average;
Specify the histogram of the column ci onto this midway histogram
H̃mid(i).

Automatically �tting the perfect parameter

The non-uniformity leads to an increased total-variation norm. Hence the
smoothest image is also the one with little or no non-uniformity at all. So
the simplest way to �nd the good parameter automatically is :

σ∗ = argminσ||Iσ||TV ,

where Iσ is the image processed by MIRE with the parameter σ. The op-
timization could be done by a dichotomy on σ. We also proved [21] the
following theorem which provides us the asymptotic behavior of this algo-
rithm.

Theorem 3 If hi i ∈ 1, ..., N are N histograms of the same landscape seen

by N di�erent columns of the sensor, and Hmid =
∑N

j=1

H−1
j

N then :

||hmid − htrue||2 ≤ max (
i∈(1,...,N)

||hi − htrue||2)

Moreover if the hi ∀i ∈ (1, ..., N) from the N columns of the sensor are i.i.d.

and centered on htrue then

||hmid− htrue||2 →
N→∞

0

Figures 5.2 and 5.3 show some results obtained on a simulated FPN and a
real infrared image. More results are available in [21].

In a recent work [20], we proposed a locally adaptable version of this algo-
rithm (named ADMIRE) where the parameter σ depends on the processed
position in the image. One obtained result is given on �gure. 5.4.
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Figure 5.2: Image 1 : The groundtruth (left), the simulated FPN (middle)
and MIRE restoration (right).

Figure 5.3: Real infrared image : RAW (left), MIRE restoration (right).

Figure 5.4: Adaptive MIRE result obtain on a real infrared image.
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Figure 5.5: ATR evaluation principle

5.2 ATD/ATR/ATT performance evaluation

For an institution like DGA which conducts projects to develop new equip-
ments for military forces, it is important to have the capabilities to evaluate
the proposed industrial or academic solutions. A major topic in infrared is
the development of Automatic Target Detection/Recognition and Tracking
(ATD/ATR/ATT) algorithms. During the years I spent at the DGA, I led
the scienti�c part of a project involving academic laboratories and indus-
trial departments working on ATD/ATR/ATT algorithms. Beside driving
the development of new algorithms, our main contribution was to propose a
complete methodology to evaluate such algorithms. The basic principle for
evaluation is depicted in Fig. 5.5. The evaluation chain has two important
parts: the image databases (which must correspond to the wanted domain
of applicability) and the metrics de�nitions (which must provide fair scores).
Next I present our contributions concerning these two parts.

5.2.1 Image databases

Bigger the size of the test image set, more con�dent the evaluation is. If cre-
ating image datasets in the visible spectrum is easy because the needed equip-
ment is widespread and cheap, in infrared imaging the needed ressources are
more di�cult to obtain and very expensive. Another binding in infrared
images for Defense is the data con�dentiality. A solution holds in the use of
scenes simulators, but those remain expensive in terms of computational time
and it is especially di�cult to select the various parameters in order to sweep
a maximum of operational scenarios in an exhaustive way. In order to dis-
pose of these constraints, we proposed [10, 11] to generate hybrid databases
by superimposition of targets and occultant in front of a background under
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constraint of image quality metrics. Entry parameters of these constraints
are most e�ective to describe realistic operational scenarios. Moreover, one
important aspect of the IR imagery is the intrinsic thermal variability of
the target signature. We proposed an original method allowing to take into
account of this variability during the scene generation. For that, we use real
images of each vehicle acquired in their �extreme� operating processes: target
at ambient temperature, target with all its potentially hot elements to the
maximum of their temperatures. These signatures are then plated on a 3D
model of the vehicle segmented under subelements of signature considered to
have an homogeneous and independent thermal behavior. It is thus possible
to selectively parameterize the temperature of these under-parts, to build
alternatives of the signature of the same target. We used a 2D projection of
this model under the wished visual angle for �nally superimposing it under
constraint and applying the wanted sensor e�ect to it.

Hybrid scenes generation

This scene generation is called �hybrid� because it consists to superimpose a
real target signature, eventually with di�erent kind of occultants (like trees,
rocks,. . .), in a real background. The interest of the method is that it is
possible to control the output image quality by some metrics [9, 23]. The
used metrics are: local contrast RSS, �detectability� quantity QD, signal
to clutter ratio SCR, occultation ratio Rx and internal target contrast K.
These quantities are de�ned by

RSS =
1

νk

√
(µC − µF1)2 + σ2

C (5.1)

QD = RSS.SC (5.2)

SCR =
νkRSS

σF
(5.3)

Rx =
Soccluded target area

Sfull target area
(5.4)

K =
µF1 − µC
νkRSS

=
∆µ

νkRSS
(5.5)

where C is the target, F1 the local background over C and F2 the remaining
background (we denote the global background F = F1 ∪F2), see Figure 5.6.
The quantities Sx, µx, σx are the surface, mean and standard deviation
of area x where x is C, F1 or F2, respectively. The coe�cient νk is the
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Figure 5.6: De�nition of di�erent areas for target superimposition over a
choosen background.

coe�cient which permits to do the conversion between pixel gray levels and
temperature in Kelvin. The choice of these parameters �xes some gains and
o�sets to apply on the pixels of both the target and background in order
to obtain the resulting image. Finally, the sensor e�ect (MTF and noise)
is applied. The hybrid scene generation process is summarized in Figure
5.7. We start, A©, by positioning the occultant, then, B©, the positioning of
the target inside the background. We apply the calculated gains and o�sets
to histograms of each region, C©. We �nish by applying the sensor e�ect,
D©. More details and expressions of the di�erent gains and o�sets to apply
can be found in [19]. However, one aspect is not taken into account in this
algorithm: the intrinsic thermal variability of targets. In the next section, we
propose an approach to deal with this aspect in the hybrid scene generation.

Intrinsic thermal variability of targets

In [10, 11], we proposed a new method which permits to deal with the in-
trinsic thermal variability of a target in IR imagery. Indeed, a same target
can have many di�erent thermal aspects according to its activity. For ex-
ample, tires of a vehicle which stopped since a long time are colder than a
vehicle which is moving for a long time. But their engine are quite identical.
However, the current vehicle recognition algorithms use some training to be
e�cient. It is obvious that this kind of algorithm will have less performances
if they never �learn� the di�erent aspects of concerned targets.
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Figure 5.7: Hybrid scene generation principle.

This variability is function of the vehicle operation, this means that it is
su�cient to modify the signature of the vehicle. As it is too complex, from
a practical point of view, to use an accurate thermal physical models for dif-
ferent targets, we propose to create intermediate signatures by interpolation
from ambient (TA) and operationnal (TF ) temperatures, taken from real
radiometric images. For that, we lay out 3D models of vehicles on which
we plate infrared textures. These textures are available for the TA and
TF temperatures. We propose to segment the surface of the vehicle into
homogeneous thermal behavior areas which are dependent on the di�erent
operationnal vehicle's areas. The relevant choosen areas are: the engine, the
main body, the mu�er, windows, tires/caterpillar (see Figure 5.8).

An intermediate thermal state of an area R (TIR) relevant to the wanted
variability, is generated by mixing the states TA and TF , according to equa-
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tion 5.6.

TIR = (1− λR)TAR + λRTFR, (5.6)

where λR ∈ [0; 1] represent the variability rate of area R. We can de�ne
three di�erent behaviors:

1. ambient temperature: λR ∈ [0; 0.1],

2. intermediate temperature: λR ∈]0.1; 0.9[,

3. in operation temperature: λR ∈ [0.9; 1].

Figure 5.8: Map of homogeneous thermal behavior of a given vehicle.

The �nal choice of λR is done by random drawings according to Gaussian laws
(or half-Gaussian at extremities, see Figure 5.9). The standard deviation
of each Gaussian is choosen in order to have 99% of its surface inside the
intervals considered above. This is equivalent to 3σTA = 3σTF = 0.1 and
3σTI = 0.4, this give us σTA = σTF = 0.33 and σTI = 0.133 respectively.
Then the di�erent laws are given by equations (5.7), (5.8) and (5.9) (for all
λR taken in the previous intervals).

PTA(λ) =
1√

2πσ2
TA

exp(−
λ2
R

2σ2
TA

) (5.7)

PTF (λ) =
1√

2πσ2
TF

exp(−(1− λR)2

2σ2
TF

) (5.8)

PTI(λ) =
1√

2πσ2
TI

exp(−(λR − 0.5)2

2σ2
TI

) (5.9)
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By selecting di�erent thermal con�gurations (for example a vehicle in standby
where its engine and mu�er are hot, its body, windows and tires at ambi-
ent temperature), we can generate the intermediate texture to plate on the
3D model. Thus, we can make 2D views, at di�erent angles, by projection
in order to increase the number of signatures in the database used for the
hybrid scene generation.

Figure 5.9: Probability laws of λ for the di�erent operationnal mode.

Simulation examples

Here, we presente some examples we have got via the previously described
method. Firstly, Figure 5.10 shows di�erent thermal con�gurations of a same
vehicle presented in the same point of view. We can see that it is possible
to create realistic IR signatures which correspond to prede�ned operationnal
states (vehicle completely motionless, vehicle in motion, . . .). In conclusion,
the method enables us the generation of all needed views of a vehicle. Sec-
ondly, these new signatures are added to a new target database which will be
used by the hybrid scene generator. This allows us to generate scenes which
hold account the intrinsic thermal variability of targets by superimposing the
wanted target taken in this new database. Figure 5.11 shows an example of
a same scene, generated with the same image quality constraints, containing
the same vehicle with di�erent thermal con�gurations.

The extension to generate a sequence of simulated frames with a moving
target is given in [12].
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Figure 5.10: Example of di�erent thermal con�gurations generated by the
proposed methode.

5.2.2 Metrics de�nitions

In this section, we address the question of which metrics are relevant to
measure performances of ATD/ATR/ATT algorithms. In fact, as each kind
of algorithm has its own characteristics it is impossible to de�ne a way to
compute a unique performance score. Each part (detection, recognition and
tracking) must have adapted metrics. In [12], we gave the criteria on which
the di�erent type of algorithm will be evaluated. We assume that for each
test images, their corresponding ground truth are available.

Detection

A detection algorithm is said e�cient when the target is detected, well lo-
calized and its size is well estimated. Let us de�ne some notations based
on �gure 5.12. We assume that the assessed algorithm outputs the bound-
ing box (BBox) around the detected target. The reference target is denoted
Z∗ and the detected one by Z. The variables Xref , Yref ,Wref , Href and
Sref are respectively the coordinates of the BBox's center, Wref , Href and
Sref are the width, height and surface of the reference target's BBox. The
same de�nitions are used for the detected target (D is the corresponding
subscript).
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Figure 5.11: Example of a same scene with di�erent thermal con�gurations
of a vehicle.

Figure 5.12: Detection's notations.
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In practice, we have two ways to declare a detection as good or not. The
�rst one is to use Jaccard's criterion [1, 15] (Eq.5.10).

m0(Z,Z∗) =
|
⋂

(Z,Z∗)|
|
⋃

(Z,Z∗)|
> ε0 = 0.5 (5.10)

The second one, inspired from the ROBIN competition [4], is to use a combi-
naison of three criteria: a localization criterion m1, a scale accuracy criterion
m2 and a segmentation accuracy criterion m3, respectively de�ned by equa-
tions (5.11) to (5.13).

m1(Z,Z∗) =
2

π
arctan

(
max

(
|XD −Xref |

Wref
,
|YD − Yref |

Href

))
(5.11)

m2(Z,Z∗) =
|SD − Sref |

max(Sd, Sref )
(5.12)

m3(Z,Z∗) =
2

π
arctan

∣∣∣∣HD

WD
−
Href

Wref

∣∣∣∣ (5.13)

Then a detection is said good if m1 ≤ ε1, m2 ≤ ε2 and m3 ≤ ε3 are simulta-
neously veri�ed, where we experimentaly choose ε1 = ε3 = 0.15 and ε2 = 0.5.
Finally, we can calculate, over the dataset, the (good) detection rate (DR),
the false alarm rate (FAR) and then plot the corresponding ROC curve [2].

In [18], the authors propose two other interesting metrics which take care
about another aspect of segmentation accuracy: the multiple trackers (MT)
and multiple objects (MO). The �rst one represents the fact that multiple
BBoxes are found on a unique target, the second one, the case of a unique
BBox on multiple targets (see �gure 5.13).

Figure 5.13: Multiple tracker (MT) and multiple objects (MO) de�nitions.

All these metrics permit to accurately evaluate the behavior and perfor-
mances of any ATD algorithm.
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Recognition

We consider two levels of classi�cation: recognition and identi�cation. The
�rst one uses general classes (car, truck, tank, . . .). The classes used by the
second level correspond to detailed model of target (AMX30, Leclerc, T72,
. . .). In order to evaluate the performances of this kind of algorithms, we
need to check if the class proposed by the ATR algorithm is or not the same
as the reference class. The best way to summarize these results is to use
confusion matrices [3].

5.2.3 Tracking

Here, we examine the tracking case performed by movement detection al-
gorithms. Two points are needed to be evaluated: the target detection and
the tracking itself. The detection case can be treated with the same metrics
as described previously. Then we speci�cally add some metrics to deal with
the performances of tracking. In [18], the authors address the behavior of
a tracker, in the sense that the algorithm could assign successive trackers
to a same target or a tracker initially assigned to one target could �jump�
to another target. The �rst one is called the False Identi�ed Tracker (FIT)
and the second one the False Identi�ed Object (FIO). For example, in �gure
5.14, the �rst target is associated with Tracker1 but at a certain time the
algorithm missed this tracker and create a new tracker: Tracker2, this is
FIT. Tracker3 is assigned to the second target but jumps to the third target
at a certain time, this corresponds to FIO.

Figure 5.14: False Identi�ed Trackers and Objects.

This complete methodology (called METRIC) to assess ATD/ATR/ATT
algorithms on infrared images allowed us to do some evaluations in an ex-
haustive way. Since the publication [12], METRIC has become the �o�cial�
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DGA methodology to assess all ATD/ATR/ATT algorithms. It permits to
easily compare the algorithms proposed to DGA and maintain an up to date
�catalogue� of such algorithms for internal purposes.
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Chapter 6

Current work and perspectives

6.1 Texture modeling

In chapter 3, I presented my contributions concerning cartoon + textures
models notably the theoretical results studying the behavior of such models
with respect to the parameters. The theorem 2 is very useful because it
tells us that we can use the decomposition as a preprocessing to characterize
textures by bandpass �ltering. I also have a lemma (not presented in this
manuscript) which characterizes the decomposition in the speci�c case of
noisy images. A forthcoming paper will present this approach in details.

One frustrating aspect of these decomposition models is their use for prac-
tical applications. Indeed, if many papers were published concerning the
mathematical concerns of such models, no papers really use it in real ap-
plications. The above cited possibility to depict a new approach to analyse
textures can be one of this application and, in a close future, I want to
investigate this possibility for camou�aged target detection.

6.2 Image restoration

6.2.1 Atmospheric restoration

We saw in chapter 4 that considering the turbulence e�ects as the combi-
nation of two operators (deformation + blur) provides a good way to build
e�cient restoration algorithms. Today, we are studying the possibility to
implement these algorithms in real time onto a small processing unit (like a
DSP) for people from the D.O.D.

87



88 CHAPTER 6. CURRENT WORK AND PERSPECTIVES

With Yohann Tendero, at the CMLA in ENS Cachan, we started to explore
the ability to add some super-resolution capabilities to the stabilization al-
gorithm and then reconstruct a more detailed image.

Beside these ideas, I'm currently mentoring an undergraduate student on a
research project where we are doing a complete parametric analysis of the
Fried kernel. Indeed, this kernel, as depicted in chapter 4, has two constant
terms (X and Y = V (Q,X)) depending on four input parameters (D,λ, L
and C2

n). We aim to understand the behavior of this MTF with respect to
these parameters in order to draw a more �mathematical� formulation which
could be easier to handle in an optimization process. Preliminary results on
the distribution of these constants seem to show that an �optimal� Y might
exist regardless the conditions of operation and that X follows a probability
law which depends only on λ (see Fig. 6.1 which shows the distribution of X
for di�erent λ). We are able to propose a kind of likelihood law Λ(X) in the
form Λλ(X) = aebX + cedX where the parameters a, b, c, d can be evaluated
by some regression method. We also found that the �optimal� X (Xopt(λ))
follow a law in powers of λ. The next step is now to use these results to
build an optimal Fried deconvolution algorithm which will estimate both the
reconstructed û and Xopt.

Another aspect concerning the Fried kernel and suggested by Michael Bren-
ner from Harvard University is about the 5/3 exponent also called the Kol-
mogorov exponent. This exponent comes from Kolmogorov's turbulence the-
ory which is well accepted by the turbulence community, but the point is
that it comes from experimental measures and no mathematical proof of
this value exists. A natural question arises connected to our deconvolution
algorithm: is this 5/3 value the optimal one? Or asking di�erently, is Kol-
mogorov right or wrong in his theory? Then I started some investigations
by changing the 5/3 value by a variable p in the Fried kernel and doing de-
convolution on a large set of images by varying p. The �rst results seem to
show that the best deconvolved image corresponds, for the whole test set, to
an optimal value of p which is very close but not exactly equal to 5/3. These
experiments open some new questions we are trying to solve.

6.2.2 Underwater restoration

I currently work on this topic in two collaborations: the �rst one with col-
leagues from the NATO group involved on modeling aspect of underwater
imaging systems. The second is for EDF (the French electricity company)
that wants to observe tagged numbers on uranium bars plunged in a pool in
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Figure 6.1: Histograms of X corresponding to di�erent λ values

a nuclear plant. Like in the atmospheric case, underwater imaging is subject
to turbulence. The water case is worse than hot air as the deformations can
have larger magnitude. We will follow the same approach as in the atmo-
spheric case by considering the combination of a distortion operator and a
blur operator. If the stabilization algorithm proposed in chapter 4 must re-
main e�cient, the Fried kernel for deblurring is no longer valid in the water.
We recently were aware of the existence of the same kind of kernel but for un-
derwater purposes. With Melissa Tong, a Ph.D. candidate at UCLA, we are
exploring this new kernel and its behavior in order to adapt the deblurring
process.

6.2.3 Digital holographic microscopy deconvolution

This collaboration has just started very recently with Thomas G. Dimiduk
from the Department of Physics in Harvard University. Thomas is working
on the development of a new equipment to do Digital Holographic Microscopy
(DHM) to observe small cells directly in 3D. As the �nal goal is to capture
the shape of the observed cell, the 3D image must have sharp edges. Nev-
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ertheless, the acquired 3D images are blurred because of the Point Spread
Function (PSF) of the equipment itself. Thomas measured the 3D PSF of
its system and it turns out that the measured PSF is extremely noisy and
cannot be used directly in a deconvolution process. We are currently inves-
tigating two directions. Firstly, we are trying to denoise the PSF itself but
classic denoising methods failed at this time and then we will try higher-
order TV schemes which seems better suited for such functions. Secondly,
di�erent PSF analytical models exist in the litterature; we are exploring the
opportunity to use such models.

6.3 QR-code restoration

Barcodes and in particular QR-codes (see Fig. 6.2) are widely used nowa-
days to distribute information on a product or a website. Smartphones are
probably the most used devices to read such codes via many applications
available on the di�erent software markets. The main problem is that each
smartphone uses its own camera to acquire the code and consequently, each
camera has a speci�c PSF. This results in a phone dependent blur plus noise
level. My collaboration with Yves Van Genip (UCLA) and Rustum Choksi
(McGill University in Montreal) drive us to a method which, after a denois-
ing of the image, uses the �xed patterns on the two top and left bottom
corners (these squares are present in all QR-codes) to estimate the PSF of
the equipment by an H1 regularization; then we use it to do the deblurring
and end with a binarization (Fig.6.3 shows a corrupted QR-code and its re-
constructed version). In order to check the e�ciency of our algorithm, we
use QR-code reader software. The software is unable to read the corrupted
code while, even if the reconstruction is not perfect, it succeeds to read the
restored code. At this time, we plan to assess the overall performances of our
method with respect to the in�uence of blur and noise, respectively. Oth-
erwise, as today we just use a regularity assumption on the blur kernel, we
also are interested to acquire some �real� kernels from di�erent smartphones
by, for example, taking many pictures of a Dirac function.

6.4 Empirical mode decomposition (EMD) theoret-
ical study

I recently attented a talk about Empirical Mode Decomposition (EMD)
which aimed to decompose a signal into di�erent modulated waveforms ac-
cordingly to the signal itself. I was intrigued by this topic because today, in



6.4. EMPIRICALMODEDECOMPOSITION (EMD) THEORETICAL STUDY91

Figure 6.2: Example of a QR-code.

Figure 6.3: A blurry and noisy input QR-code is shown on left and our
reconstructed output on right.

my knowledge, there is only two proposed approaches to do this decomposi-
tion. The original one is based on some nonlinear �ltering which prevents to
the development of a �good� theoretical framework; the second one (which
was the purpose of the talk I attented) proposes a functional based on spar-
sity and compressive sensing tools to obtain such decompositions. This last
approach is interesting but remains di�cult to interpret and is quite expen-
sive in terms of computational time. After reading some papers about EMD,
I have the feeling that we can built some kind of adaptive �ltering approach
to get this decomposition maybe by generalizing the demodulation process
used in electronics to listen radio channels. I started to write some ideas and
I will continue to explore this way in the future.
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Chapter 7

Publications

This chapter gives the complete list of my publications. Let you note that the
weak number of publications in journals is due to the fact that a large amount
of my contributions were classi�ed while I was at the DGA. Moreover, DGA's
politics about publishing was to promote Defense conferences like SPIE.

Conferences with reviewing commitee

[1] J. Gilles. Choix d'un espace de représentation image adapté à la détection
de réseaux routiers. Symposium Traitement et Analyse de l'Information:
Méthodes et Applications (TAIMA), Hammamet (Tunisie), 2007.

[2] J. Gilles. Séparation en composantes structures, textures et bruit d'une
image, apport de l'utilisation des contourlettes. In GRETSI Symposium
on Signal and Image Processing, Dijon, France, September 2009.

[3] J. Gilles and B. Collin. Fast probabilist snake algorithm. International
Conference on Image Processing (ICIP), Barcelona, 2003.

[4] J. Gilles, T. Dagobert, and C. De Franchis. Atmospheric turbulence
restoration by di�eomorphic image registration and blind deconvolution.
Advanced Concept for Intelligent Vision Systems Conference (ACIVS),
Juan les Pins, France, 2008.

[5] J. Gilles, S. Landeau, T. Dagobert, P. Chevalier, and C. Bolut. Généra-
tion de bases de données images ir sous contraintes avec variabilité ther-
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mique intrinsèque des cibles. In GRETSI Symposium on Signal and
Image Processing, Dijon, France, September 2009.

[6] J. Gilles, S. Landeau, T. Dagobert, P. Chevalier, E. Stiée, D. Diaz, and J-
L. Maillart. Metric: a complete methodology for performances evaluation
of automatic target detection, recognition and tracking algorithms in
infrared imagery. In OPTRO 2010, Paris, France, February 2010.

[7] J. Gilles, B.R. Sharma, W. Ferenc, H. Kastein, L. Lieu, R. Wilson, Y.R.
Huang, A.L. Bertozzi, B. HomChaudhuri, S. Ramakrishnan, and M. Ku-
mar. Robot swarming over the internet. In American Control Conference,
Montreal, Canada, June 2012.

[8] N. Morizet and J. Gilles. A novel adaptive combination approach to score
level fusion for multimodal biometrics combining wavelets ans statistical
moments. International Symposium on Visual Computing (ISVC), Las
Vegas (US), 2008.

Conferences based on abstract submission or invita-
tion

[1] J. Gilles. Restoration algorithm and system performance evaluation for
active imaging systems. SPIE Security and Defense, Florence (Italie),
2007.

[2] J. Gilles, S. Landeau, T. Dagobert, P. Chevalier, and C. Bolut. Ir im-
age databases generation under target intrinsic thermal variability con-
straints. In International IR Target and Background Modeling & Simu-
lation Workshop (ITBMS), Toulouse, France, June 2009.

[3] J. Gilles and S. Osher. Fried deconvolution. In SPIE Defense, Security
and Sensing conference, Baltimore, US, April 2012.

[4] J. Gilles and S. Osher. Turbulence restoration: Atmospheric deblurring.
In Mini-Symposium on Imaging Through Turbulence at the SIAM Imag-
ing Sciences conference, Philadelphia, US, May 2012.

[5] J. Ma, Y. Yang, S. Osher, and J. Gilles. Image reconstruction in com-
pressed remote sensing with low-rank and L1-norm regularization. In
IGARSS Conference (IEEE International Geoscience and Remote Sens-
ing Symposium), Munich, Germany, July 2012.
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[6] Y. Mao and J. Gilles. Non rigid turbulence stabilization. In Mini-
Symposium on Imaging Through Turbulence at the SIAM Imaging Sci-
ences conference, Philadelphia, US, May 2012.

[7] Y. Mao and J. Gilles. Turbulence stabilization. In SPIE Defense, Security
and Sensing conference, Baltimore, US, April 2012.

[8] Y. Tendero and J. Gilles. ADMIRE a locally adaptive single image non-
uniformity correction and denoising algorithm. application to uncooled
ir camera. In SPIE Defense, Security and Sensing conference, Baltimore,
US, April 2012.

[9] Y. Tendero, J. Gilles, S. Landeau, and J-M. Morel. E�cient single im-
age non-uniformity correction algorithm. In SPIE Security and Defence
International Symposium, Toulouse, France, September 2010.

Journals with reviewing commitee

[1] J. Gilles. Noisy image decomposition: a new structure, texture and noise
model based on local adaptivity. Journal of Mathematical Imaging and
Vision (JMIV), 28(3):285�295, 2007.

[2] J. Gilles. Multiscale texture separation. Submited to SIAM Multiscale,
Modeling and Simulation Journal, 2012.

[3] J. Gilles, Y. Mao, and S. Osher. Turbulent image restoration: from
stabilization to deblurring. Submited in Journal of Optical Engineering
for a special issue on imaging through atmospheric turbulence, 2012.

[4] J. Gilles and Y. Meyer. Properties of BV-G structures + textures decom-
position models. application to road detection in satellite images. IEEE
Transaction in Image Processing, 19(11):2793�2800, 2010.

[5] Y. Mao and J. Gilles. Non rigid geometric distortions correction - ap-
plication to atmospheric turbulence stabilization. To appear in Inverse
Problems and Imaging Journal, 2012.
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Invited seminars, workshops

[1] J. Gilles. Apport de l'information géométrique en décomposition
d'images. Workshop Contenu Informatif des Images Numériques (CIIN),
ENS Cachan, 2004.

[2] J. Gilles. Décomposition des images en composantes géométriques, tex-
tures et bruit: application aux images de la défense. Workshop Mathé-
matiques, Image et Gestaltisme (MIG), Ile de Berder, Golfe du Morbi-
han, 2004.

[3] J. Gilles. Décomposition d'images - applications. Séminaire du labora-
toire Signaux et Systèmes (LSS), Supelec, 2004.

[4] J. Gilles. Décomposition des images: principes et application à la détec-
tion de réseaux routiers. Journée PRIDES, Laboratoire SIC - Université
de Poitiers, 2007.

[5] J. Gilles. Décomposition d'images. Colloque Mathématiques et Im-
ages, Laboratoire de mathématiques et applications, Université de la
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[6] J. Gilles and J.F. Aujol. Suppression de bruit multiplicatif par décom-
position d'images - application aux images SAR. Journées imagerie
polarimétrique - GdR ISIS - GdR Ondes, 2004.

[7] J. Gilles and J.F. Aujol. Modélisation des images par espaces de fonc-
tions. Ecole analyse multirésolution des images, Université de Poitiers,
2008.

[8] J. Gilles and A.L. Bertozzi. Robot swarming over the internet. In
21st Southern California Nonlinear Control Workshop, California, US,
October 2011. UCLA.

[9] J. Gilles, B.R. Sharma, W. Ferenc, H. Kastein, L. Lieu, R. Wilson,
Y.R. Huang, A.L. Bertozzi, B. HomChaudhuri, S. Ramakrishnan, and
M. Kumar. Robot swarming over the internet. In Frontiers of Real-
World Multi-Robot Systems: Challenges and Opportunities Workshop,
North Carolina, US, October 2011. Duke University.

[10] Y. Mao and J. Gilles. Turbulence image restoration by deformation �eld
estimation and total variation regularization. In Turbulence Workshop,



97

Alexandria, Virginia US, August 2010. Night Vision and Electronic Sen-
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