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PART THREE

Wavelets
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@ Reminder about STFT limitations

@ Families of wavelets and adaptive time-frequency plane
@ Wavelet transform : definition and properties

@ Multi-Resolution Analysis (MRA)

@ 2D extensions

@ Applications (approximation, denoising, compression)

JGS Basics about Wavelets



Previously ...

Si(v,7) = / o~ w(t —7)f(t)e 2™ dt

Prescribed time-frequency plane tiling

T

-~

At

Av

JGS Basics about Wavelets



STFT limitations
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Adaptative time-frequency plane
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Adaptative time-frequency plane
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A few history ...

@ 1946, Denis Gabor : STFT with gaussian windows.
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A few history ...

@ 1946, Denis Gabor : STFT with gaussian windows.

@ 1982, Jean Morlet : geophysics application, propose to
replace the modulation by the dilation of a fixed function.

JGS Basics about Wavelets



A few history ...

@ 1946, Denis Gabor : STFT with gaussian windows.

@ 1982, Jean Morlet : geophysics application, propose to
replace the modulation by the dilation of a fixed function.

@ 1984, Alex Grossmann and his team at Marseille (France) :
link between Morlet’s wavelet and coherent states in
quantum physics + link with frame theory.
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A few history ...

denis Gabor : STFT with gaussian windows.

ean Morlet : geophysics application, propose to
the modulation by the dilation of a fixed function.

lex Grossmann and his team at Marseille (France) :
een Morlet’s wavelet and coherent states in
physics + link with frame theory.

° 1985 Yves Meyer (Gauss Prize 2010) : link with harmonic
analysis and establishment of mathematical foundations
for a wavelet theory + discovery of the first orthonormal
wavelet basis (1986).
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A few history ...

@ 1946, Denis Gabor : STFT with gaussian windows.

@ 1982, Jean Morlet : geophysics application, propose to
replace the modulation by the dilation of a fixed function.

@ 1984, Alex Grossmann and his team at Marseille (France) :
link between Morlet’s wavelet and coherent states in
quantum physics + link with frame theory.

@ 1985, Yves Meyer (Gauss Prize 2010) : link with harmonic
analysis and establishment of mathematical foundations
for a wavelet theory + discovery of the first orthonormal
wavelet basis (1986).

@ followers ... : S.Mallat, I.Daubechies, R.Coiffman,
A.Cohen, ...
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Before with Fourier

~ +OO
f(v) = / f(Hye 2™t = (f, &™)

—00

We project the signal f on the family of functions {e”?™!}.

It is this family which fixes the time-frequency plane tiling.
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Before with Fourier

. oo
f(v) = / f(t)e ™dt = (f, &™)

—00

We project the signal f on the family of functions {e’2™}.

It is this family which fixes the time-frequency plane tiling.

Question : Is it possible to find a family of function in order
to get the desired tiling ?
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Wavelet family

We choose a “mother” wavelet ¢(t) such that [*_«(t)dt =0
(zero mean) and ||¢||;2 = 1

We built a wavelet family by

dilation/contraction (parameter _——————————————,
a € R™) and translation 02y 1
(parameter b € R) of the i i
mother wavelet : 04l ]
1 f—b Mo s s 4 2 0 2 4 8 8w
Yab(t) = ﬁw (a > ——
Note : [[1hapll2 =1
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Continuous Wavelet Transform

Wi(a.t) = (fbas) = [ 100 (52) a

Admissibility condition : if C,, = [;7> 2024y, < 4o then

Inverse transform
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First properties

Energy conservation

teo 1 oo [hee da
2.4p ' 2ap==
[ irwea=o- [ [ iwia )b

—00

CWT is a filtering process !

If we write . .
dalt) = = (a)

then
W;(a, b) = f x 14(b)

Note : $a(v) = vav (av).
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Interpretation

The wavelet transform is a passband filtering !

/J}ao 1&(11 /J}ag
v v

XX

Consequence : we cannot get the zero frequency — the
missing part is obtained with the scaling function.
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Scaling function 1/2

We know Ws(a, b) for a < ag — and we need to know the
information corresponding to a > ag in order to perfectly rebuild
f. To do this we use the scaling function which is defined from
its Fourier transform and the FT of the wavelet :

+o00
Boe= [ 1 (s)\z"’5

We can also write ¢4(t) = ﬁqﬁ* (3!) thus the missing
information is captured by a lowpass filtering :

Li(ab) = (10,0 (157) ) = Fdalw)
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Scaling function 2/2

Oabay Yo Y
L v

The reconstruction is obtained by :

f(t) = / We(a, . *¢a()

1

+ C¢ ao

Li(a,.) * ¢pay(t)
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Time-frequency plane tiling

CLUAIL,
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@ Sampled signals (timestep = N~ 1).
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@ Sampled signals (timestep = N~ 1).
e Discrete scales : a = (2'/#)/ (i scales per octave [2/, 2/1]).
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@ Sampled signals (timestep = N~ 1).
@ Discrete scales : a = (2'/#Y (u scales per octave [2/,2/11]).
o Dilated wavelet defined by (d = 2'/) y[n] = -1y (5)
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@ Sampled signals (timestep = N~ 1).
@ Discrete scales : a = (2'/#Y (u scales per octave [2/,2/11]).
o Dilated wavelet defined by (d = 2'/) y[n] = -1y (5)

) Discrete_ transform : B
Wiln, o] = S04 flmlyf[m — n] = f@d;[n] (signal
periodization).
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@ Sampled signals (timestep = N~ 1).
@ Discrete scales : a = (2'/#Y (u scales per octave [2/,2/11]).
o Dilated wavelet defined by (d = 2'/) y[n] = -1y (5)

) Discrete_ transform : B
Wiln, o] = S04 flmlyf[m — n] = f@d;[n] (signal
periodization).

@ Scaling function : ¢ [n] = ﬁqﬁ (d—”J> where ap = d”.
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@ Sampled signals (timestep = N*1).
@ Discrete scales : a = (2'/#Y (u scales per octave [2/,2/11]).
o Dilated wavelet defined by (d = 2'/) y[n] = -1y (5)
) Discrete_ transform : B
Wiln, o] = S04 flmlyf[m — n] = f@d;[n] (signal
periodization).
@ Scaling function : ¢4[n] = ﬁqﬁ (d—”J> where ap = d’.
@ Low frequencies are obtained by : B
Lyn, @’ = =4 fimles[m — n] = f@y[n]
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Some examples 1/4

We use the same signals as in the Fourier slides :
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B0 1
08
50
06
40 04
n 02
0
20 02
10 -04
06
0 VWVWNAANNAAN
-08
00 @m0 W0 40 50 ®0 700 0 9 10 o0z 04 0s
400Hz
> <
30Hz
>
150Hz _
| Il N | >
| I ' |
0.39 0.4 0.78 0.8 t
0 1

JGS Basics about Wavelets



Some examples 2/4

Analyzed Signal (lenath=1000)
T T

100 200 300
Ca b Coeficients - Coloration mode: init + by scale + abs

700 200 00

1000

Scale of colars fram MIN o WX

Data (Size)

Wiavelet

1000y

woif w8 v

Sampling Period | 1

Scale Settings

sig

Fower 2 Made

Power g

Selected Axes

[ coefficients Line
[ Maima Lines

O Frequencies

Coloration Made

Colomap  |jet -
Mb. Colors . L 128
Brightness [

GS
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Some examples 3/4

Analyzed Signal (length = 1001) Data (Size) % (1001)
T wavelst  [coit w5 ~

0.5
m

o I
m Srale Seftings
| ‘
Step by Step Mode
il Il ! 1L I Il
100 200 300 700 |00 Q00 1000 Min (= 0y
Ca,b Coefficients - Coloration made: init + by scale + abs.
Steni=0}

Max (== 256)

Selected Axes
Coefficients
[ Coefiicients Line
[ Maxima Lines

© seales O Frequenties
Coloration Wode
init + by scale + abs v
Colommap  |jet v
Mp.Colors <[ [ r||128
Scale of colors from MIN 1o MAX Brighiness [ - )+ )




Some examples 4/4

Anabzed Signal (ength =1000) Data (Size) sig (1000
T T

wavelet [coit s -

of m

Scale Settings

—z ‘ ‘ ‘ ! ! | Step by Step Mode ~
100 200 a00

I | I
700 800 900 1000 Min (> 0) 1

400 500 600
Ca/h Coefficients - Calaration mode: init + by scale + abs Step £>0) 1

Max (== 256) B4

— Analyze

Selected Aves
Coeflicients
[ Caoefficients Line
] maxima Lines

() scales (O Frequencies

Coloration hode

init + by seale + abs v

Colormap jet ~
Nb.Colors <[ [+ ] 128
Scale of colors from MIN fo hAX Brightness [« J__+ |
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Notion of Bases et Frames

In g eom etry Orthogonal Basis Frame Biorthogonal basis

Orthogonal bases
{en} is an orthogonal basis if (e,, em) = 0if m # n.
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Notion of Bases et Frames

In g eom etry Orthogonal Basis Frame Biorthogonal basis

{en} is a frame if A, B > 0 such that

Allf(12, < X per [{f, €n)[? < BIIf[|2.

The reconstruction is obtained by using the pseudo-inverse
operator using the dual frame {é&,}.

If A= B then we have a tight frame
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Notion of Bases et Frames

I n g eom etry Orthogonal Basis Frame Biorthogonal basis
(f)u(ﬁz’a() h;fll 1Z’a2
ooy v
Orthogonal basis v
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Notion of Bases et Frames

In g eom etry Orthogonal Basis Frame Biorthogonal basis

Biorthogonal basis

Let two wavelet families {v; »} and {; »}, they are said
biorthogonal if

(@Z)j,na @Zj’,n’> = 5[n - n/]6U _j,] v(j,j/, n, n/) € Z4
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A particular case : the dyadic case

The scales are discretized by a = 2/.

1 t—2n
in 1) = — i
{lb/, (1) \@w < 2 >}(j7n)622

Many advantages :

@ ltis “easy” to build orthogonal bases with specific
properties (regularity, support compactness, .. .).

@ Direct link with the theory of conjugate mirror filters.
@ Fast algorithms using filter banks and subsampling.
@ Easy to construct a Multi-Resolution Analysis (MRA).
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Multi-Resolution Analysis (MRA)

MRA

° V(j,k) e Z?,f(t) e Vi &
f(t—2k) eV

e VjeZ, Vj+1 - V/

o VjeZf(t)e Ve f(5) € Vi

@ limi V= n]—foo = {0}

o limj,_o Vi =U =, Vi = LA(R)

@ 3{0(t — n)}nez, Riesz basis, of
Vo.
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Multi-Resolution Analysis (MRA)

MRA
° V(j,k) e Z?,f(t) e Vi &
f(t—2k)eV

e VjeZ, \/j+1 - V/

o VjeZf(t)e Ve f(5) € Vi
@ limi V= n]——oo = {0}
o limi,_o Vi =U2, V= LA(R)
° fl/ff(t n)}nez, Riesz basis, of —_—

J+

JGS Basics about Wavelets



Multi-Resolution Analysis (MRA)

MRA

° V(j,k) e Z?,f(t) e Vi &
f(t—2k)eV

e Vjez, \/j+1 C V/

o VjeZf(t)e Ve f(5) € Vi

@ limi V= n]——oo = {0}

o limi,_o Vi =U2, V= LA(R)

@ 3{0(t — n)}nez, Riesz basis, of
Vo.
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Multi-Resolution Analysis (MRA)

MRA

° V(j,k) e Z?,f(t) e Vi &
f(t—2k)eV

e Vjez, \/j+1 C V/

o VjeZf(t)e Ve f(5) € Vi

@ limi V= n]——oo = {0}

o limi,_o Vi =U2, V= LA(R)

@ 3{0(t — n)}nez, Riesz basis, of
Vo.
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Multi-Resolution Analysis (MRA)

MRA

° V(j,k) e Z?,f(t) e Vi &
f(t—2k) eV

e VjeZ, Vj+1 - V/

o VjeZf(t)e Ve f(5) € Vi

@ limi V= n]—foo = {0}

o limj,_o Vi =U =, Vi = LA(R)

@ 3{0(t — n)}nez, Riesz basis, of
Vo.

Vo
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MRA and wavelets

V; < low resolutions < a;[n] = (f, ¢; n)
W, < high resolutions (details) < d;[n] = (f, ) n) \
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MRA and wavelets

V; < low resolutions < a;[n] = (f, ¢; n)
W, < high resolutions (details) < d;[n] = (f, ) n)

Theorem of Mallat (recursive transform)

We can build numerical filters h and g corresponding respectively to
¢ and v such that

+oo
gjw1lpl = D hln—2plajln]

nN=—o00

+oo
dilol = Y gln—2p]an]

nN=—oo
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Example

Sealing function phi

dh Wavelet—> db10

‘Wavelet furiction psi

0.8
0g
06
0.4 0
0.2
0 05
-0.2
04 4
a 4 10 14 a g 10 15
Decomposition Iow-pass filter Decomposition high-pass Tilter
0.5 0g
==....--.."“f k4 i"’...----====
-0.5 -0.5 l
o 2 4 & El 10 12 14 16 12 a b 8 El 10 12 14 16 18
Reconstruction low-pass filter Reconstruction high-pass filter
05 T ik
21T s o ereesses IO 1 L]
[3 weteresees seeeeeetiyit T l
05 05 P’
o 2 4 B 8 1m 12 14 18 18 ) 2 B 8 10 12 14 16 18

GS

Basics about Wavelets

wavelet  [db ~[10 v

Refinement g v

| Display
Information o

Daubechies Family (DB}
All Wavelet Families




Fast Wavelet Transform

a; h —b‘Q AR h —D‘Q l—» 4j12

g —D‘Q—‘ g —D‘Q —»dj+2

Decomposition >
Reconstruction
s
Ajy2——{4 2 o h AR b2t 1 a;
dj+2—>f2—>g f2—>g
dj =
hln] = h[—n]
gln] = g[—n]
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Examples (without subsampling)

Decomposition at level 5 5= a5 + d5 + 44 + d3 + d2 + d1 Data (Size) sig (1000)
e T T T T T ] Wavelet  [an ~|10 -
s i Level 5 v
0 . " i
Analze
a )
Statistics
Histagrams De-naise
dg
Display mode
' ! ! ! ! 7 Full Decampasition v
dy atlevel 5 v
I L L L L I
[ show Synthesized Sig
d3
T T T T T T T T
10 B
Al
d, o VA VAR A
0 1 1 1 1 1 1 1 1 1
20 T T T T T T T T
10 B
d, o
a0l i
I I I I I L I I L
100 200 300 400 500 600 700 800 00 1000
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Examples (without subsampling)

S =
. inE—————y

}\)WV T — N
T — =




Examples (without subsampling)

Data (Size) sig (1000)

Decomposition at level §: 5= 35 + d5 + d4 +d3 + d2 + o1
2 ! T T ! ' Wavelet db |10 v
s o H I\!: Level 5 v
72 ! ! | | | / A ! u
ggg F T T T ] Anahze
004 m
a5 nozl ]
o ]
002 | 1 | —
0.1
Histgrams De-naise
d; B
i Display moda
Full Decarmpasition v
d4 atlevel uv
[ shaw Synihesized Sig.
0sF
0
d
sl
| | | I | | ! h

I

I
100 200 300 400 500 600 700

800

VEVEIES

a00

1000




= 2 variables = ¢(x, y) and ¥ (x, y). J
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= 2 variables = ¢(x, y) and ¥ (x, y). J

Two strategies
@ Building directly functions of two variables (ex : Gabor filters).

@ Using separable filters hence using two 1D transforms with
respect to each variable.
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2D extension : direct construction

Ex : Gabor wavelets, Morlet's wavelet, Cauchy’s wavelets, ...
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2D extension : separable transforms

Idea : we filter (1D transforms) first in one direction then in the other.
= Direct extension of Mallat’s algorithm.

aj h ——{2

h {2 — %+

7 ={}2 —Pd}+1

h 2 —»dfﬂ

7 =42 —»df'ﬂ

Filters applied in
the vertical direction

Filters applied in
the horizontal direction
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2D extension : inverse separable transform

aj+1—>f2 —» h

d}+1—>f2 —» g

d§+1—>f2 —» h

d3+1—>f2 — g

Filters applied in
the vertical direction

Filters applied in
the horizontal direction
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2D transform example

Criginal Image
—

100

200

250




Decampasition at level 1
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2D transform example

Image Selsction F———

Decomposition at level 2
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rm example

Image Selection B

..[l'r

Decomposition at level 3
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Interpretation in the Fourier domain

VQT

2

2 02 a2 )2 .
‘ ‘ ‘ ‘ ”

2
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2D : a very particular world !

Separable wavelets = analysis with respect the horizontal and
vertical directions.

But in an image the information can follow any direction.

Separable wayvelet Desired approximation
approximation
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Better families . ..

It is possible to build frames adapted to the idea of direction,
eventually to the geometry itself.




Better families . ..

It is possible to build frames adapted to the idea of direction,
eventually to the geometry itself.

= ridgelets, curvelets, contourlets, edgelets, bandelets,. . .
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Contourlets

@ Laplacian Pyramid to get the

R ettt multi-resolution property

! Directional Filter

1 Bank2 @ Directional filters based on
quinqux filters

Directional Filter Bank 1
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Contourlets
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Applications

@ Denoising

@ Deconvolution
@ Compression
° ...
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Premises : notion of approximation theory

Each coefficient contains more or less important information

Original
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Premises : notion of approximation theory

Each coefficient contains more or less important information

Original Wavelet Coefficients (Daubechies)
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Premises : notion of approximation theory

Each coefficient contains more or less important information

Reconstruction without the
highest frequencies

Original
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Premises : notion of approximation theory

Soft thresholding
Let a threshold T

0 it x| <T

AT T) = {sign(x)(|x| ~T) it |x>T

Hard thresholding)
Let a threshold T
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Example of soft thresholding
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Example of hard thresholding

T =1000
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Denoising

Noise Wavelet coefficients of noise

The noise energy is distributed among all scales (low amplitude
coefficients).

VEVEIES



= we can use some thresholding to remove the noise

coefficients.

Image—»

DWT

Thresholding

Inverse DWT

— Denoised image

Gaussian noise = soft thresholding is optimal in theory but hard
thresholding provides visually better results.

JGS
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Denoising : example

Original Noisy Version
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Denoising : example

Original Soft thresh. on wavelet coefs
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Denoising : example

Original Hard thresh. on wavelet coefs
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Denoising : example

Original Soft thresh. on contourlet coefs
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Denoising : example

~

Original Hard thresh. on contourlet coefs
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Compression : general principle

Changing into a new
representation space

Image ——» Quantification

Compressed image «—— Coding scheme
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Compression : JPEG2000

RVB to YUV Sub-sampling
conversion
' gugn
Tiling
generation
‘Wavelet
transform \ T
= - -
— '
L _ - -
1 1 1
F-r-r-r-
/ [
Quantification

\ ___:

Block division and
Bit planes processing

GS

L.l 010111

Encoding
Storage

Basics about Wavelets



Compression : JPEG2000

JPEG 1 :86 JPEG 1 :41

JPEG2000 1 :86 JPEG2000 1 :41
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Wavelet Wonderland . ..

@ Other extensions : wavelet packets, rational wavelets, . . .

@ Useful tool in functional analysis (Besov spaces, Triebel-Lizorkin
spaces), ...

@ Direct link with the approximation theory, . ..

@ Useful tool to solve differential equations, ...
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Wavelet Wonderland . ..

@ Other extensions : wavelet packets, rational wavelets, . . .

@ Useful tool in functional analysis (Besov spaces, Triebel-Lizorkin
spaces), ...

@ Direct link with the approximation theory, . ..

@ Useful tool to solve differential equations, ...

From the application point of view :

@ Video Compression (MPEG4, ...)
@ Signal analysis : seismic, acoustic, . ..

@ Image processing : texture analysis, modeling, . ..
o ...
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Some references

@ S.Mallat, “A Wavelet Tour of Signal Processing, 3 Ed”

@ M.Vetterli, “Wavelets and subband coding”
(http://infoscience.epfl.ch/record/33934/
files/VetterliKovacevic95_Manuscript.pdf?
version=1)

@ Y.Meyer, “Wavelets and operators” (3 volumes)

@ Wavelet Digest : http://www.wavelet.org

JGS Basics about Wavelets


http://infoscience.epfl.ch/record/33934/files/VetterliKovacevic95_Manuscript.pdf?version=1
http://infoscience.epfl.ch/record/33934/files/VetterliKovacevic95_Manuscript.pdf?version=1
http://infoscience.epfl.ch/record/33934/files/VetterliKovacevic95_Manuscript.pdf?version=1
http://www.wavelet.org

