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PART THREE

Wavelets



On the menu ...

Reminder about STFT limitations
Families of wavelets and adaptive time-frequency plane
Wavelet transform : definition and properties
Multi-Resolution Analysis (MRA)
2D extensions
Applications (approximation, denoising, compression)
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Previously ...
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STFT

Sf (ν, τ) =

∫ +∞

−∞
w(t − τ)f (t)e−2πνtdt

Prescribed time-frequency plane tiling

ν

τ

∆t
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STFT limitations
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Adaptative time-frequency plane
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Adaptative time-frequency plane
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⇒Wavelets



A few history ...

1946, Denis Gabor : STFT with gaussian windows.

1982, Jean Morlet : geophysics application, propose to
replace the modulation by the dilation of a fixed function.
1984, Alex Grossmann and his team at Marseille (France) :
link between Morlet’s wavelet and coherent states in
quantum physics + link with frame theory.
1985, Yves Meyer (Gauss Prize 2010) : link with harmonic
analysis and establishment of mathematical foundations
for a wavelet theory + discovery of the first orthonormal
wavelet basis (1986).
followers . . . : S.Mallat, I.Daubechies, R.Coiffman,
A.Cohen, . . .
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Before with Fourier

f̂ (ν) =

∫ +∞

−∞
f (t)e−2πνtdt = 〈f ,e2πνt〉

We project the signal f on the family of functions {e2πνt}.

It is this family which fixes the time-frequency plane tiling.

JGS Basics about Wavelets



Before with Fourier

f̂ (ν) =

∫ +∞

−∞
f (t)e−2πνtdt = 〈f ,e2πνt〉

We project the signal f on the family of functions {e2πνt}.

It is this family which fixes the time-frequency plane tiling.

Question : Is it possible to find a family of function in order
to get the desired tiling ?
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Wavelet family
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We choose a “mother” wavelet ψ(t) such that
∫∞
−∞ ψ(t)dt = 0

(zero mean) and ‖ψ‖L2 = 1

We built a wavelet family by
dilation/contraction (parameter
a ∈ R+) and translation
(parameter b ∈ R) of the
mother wavelet :

ψa,b(t) =
1√
a
ψ

(
t − b

a

)
Note : ‖ψa,b‖L2 = 1



Continuous Wavelet Transform
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CWT

Wf (a,b) = 〈f , ψa,b〉 =

∫ +∞

−∞
f (t)

1√
a
ψ∗
(

t − b
a

)
dt

Admissibility condition : if Cψ =
∫ +∞

0
|ψ̂(ν)|2
ν dν < +∞ then

Inverse transform

f (t) =
1

Cψ

∫ +∞

0

∫ +∞

−∞
Wf (a,b)

1√
a
ψ

(
t − b

a

)
db

da
a2



First properties
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Energy conservation∫ +∞

−∞
|f (t)|2dt =

1
Cψ

∫ +∞

0

∫ +∞

−∞
|Wf (a,b)|2db

da
a2

CWT is a filtering process !

If we write

ψ̄a(t) =
1√
a
ψ∗
(−t

a

)
then

Wf (a,b) = f ? ψ̄a(b)

Note : ̂̄ψa(ν) =
√

aψ̂∗(aν).



Interpretation
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The wavelet transform is a passband filtering !

ν

ψ̂a0 ψ̂a1 ψ̂a2

Consequence : we cannot get the zero frequency −→ the
missing part is obtained with the scaling function.



Scaling function 1/2

We know Wf (a,b) for a < a0 −→ and we need to know the
information corresponding to a > a0 in order to perfectly rebuild
f . To do this we use the scaling function which is defined from
its Fourier transform and the FT of the wavelet :

|φ̂(ν)|2 =

∫ +∞

ν
|ψ̂(ξ)|2 dξ

ξ

We can also write φ̄a(t) = 1√
aφ
∗ (−t

a

)
thus the missing

information is captured by a lowpass filtering :

Lf (a,b) =

〈
f (t),

1√
a
φ

(
t − u

a

)〉
= f ? φ̄a(u)
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Scaling function 2/2
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ν

ψ̂a0 ψ̂a1 ψ̂a2φ̂a0

The reconstruction is obtained by :

f (t) =
1

Cψ

∫ a0

0
Wf (a, .) ? ψa(t)

da
a2

+
1

Cψa0
Lf (a, .) ? φa0(t)



Time-frequency plane tiling

∆ν/a1

a1∆t

∆ν/a0

a0∆t

ν

τ

JGS Basics about Wavelets



Discretization

Sampled signals (timestep = N−1).

Discrete scales : a = (21/µ)j (µ scales per octave [2j ,2j+1[).

Dilated wavelet defined by (d = 21/µ) ψj [n] = 1√
d j ψ

(
n
d j

)
.

Discrete transform :
Wf [n,d j ] =

∑N−1
m=0 f [m]ψ∗j [m − n] = f ?©ψ̄j [n] (signal

periodization).

Scaling function : φJ [n] = 1√
dJ φ

(
n

dJ

)
where a0 = dJ .

Low frequencies are obtained by :
Lf [n,dJ ] =

∑N−1
m=0 f [m]φ∗J [m − n] = f ?©φ̄J [n]
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Some examples 1/4
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We use the same signals as in the Fourier slides :

0 1
0.40.39 0.78 0.8 t

150Hz

30Hz

400Hz



Some examples 2/4
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Some examples 3/4
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Some examples 4/4
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Notion of Bases et Frames
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In geometry Orthogonal Basis Frame Biorthogonal basis

Orthogonal bases

{en} is an orthogonal basis if 〈en,em〉 = 0 if m 6= n.



Notion of Bases et Frames
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In geometry Orthogonal Basis Frame Biorthogonal basis

Frames
{en} is a frame if ∃A,B > 0 such that
A‖f‖2L2 6

∑
n∈Γ |〈f ,en〉|2 6 B‖f‖2L2 .

The reconstruction is obtained by using the pseudo-inverse
operator using the dual frame {ẽn}.
If A = B then we have a tight frame



Notion of Bases et Frames
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In geometry Orthogonal Basis Frame Biorthogonal basis

Orthogonal basis ν

ψ̂a0 ψ̂a1 ψ̂a2φ̂a0

Frame ν

ψ̂a0 ψ̂a1 ψ̂a2φ̂a0



Notion of Bases et Frames
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In geometry Orthogonal Basis Frame Biorthogonal basis

Biorthogonal basis

Let two wavelet families {ψj,n} and {ψ̃j,n}, they are said
biorthogonal if

〈ψj,n, ψ̃j ′,n′〉 = δ[n − n′]δ[j − j ′] ∀(j , j ′,n,n′) ∈ Z4



A particular case : the dyadic case

The scales are discretized by a = 2j .{
ψj,n(t) =

1√
2j
ψ

(
t − 2jn

2j

)}
(j,n)∈Z2

Many advantages :
It is “easy” to build orthogonal bases with specific
properties (regularity, support compactness, . . .).
Direct link with the theory of conjugate mirror filters.
Fast algorithms using filter banks and subsampling.
Easy to construct a Multi-Resolution Analysis (MRA).
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Multi-Resolution Analysis (MRA)
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MRA

∀(j , k) ∈ Z2, f (t) ∈ Vj ⇔
f (t − 2jk) ∈ Vj

∀j ∈ Z,Vj+1 ⊂ Vj

∀j ∈ Z, f (t) ∈ Vj ⇔ f
( t

2

)
∈ Vj+1

limj→+∞ Vj =
⋂+∞

j=−∞ Vj = {0}
limj→−∞ Vj =

⋃+∞
j=−∞ Vj = L2(R)

∃{θ(t − n)}n∈Z, Riesz basis, of
V0.

Vj
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MRA

∀(j , k) ∈ Z2, f (t) ∈ Vj ⇔
f (t − 2jk) ∈ Vj
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2
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j=−∞ Vj = {0}
limj→−∞ Vj =
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j=−∞ Vj = L2(R)

∃{θ(t − n)}n∈Z, Riesz basis, of
V0. Vj+1

Wj+1



Multi-Resolution Analysis (MRA)
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MRA
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Multi-Resolution Analysis (MRA)
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MRA
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MRA and wavelets
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Vj ⇔ low resolutions⇔ aj [n] = 〈f , φj,n〉
Wj ⇔ high resolutions (details)⇔ dj [n] = 〈f , ψj,n〉



MRA and wavelets
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Vj ⇔ low resolutions⇔ aj [n] = 〈f , φj,n〉
Wj ⇔ high resolutions (details)⇔ dj [n] = 〈f , ψj,n〉

Theorem of Mallat (recursive transform)
We can build numerical filters h and g corresponding respectively to
φ and ψ such that

aj+1[p] =
+∞∑

n=−∞
h[n − 2p]aj [n]

dj+1[p] =
+∞∑

n=−∞
g[n − 2p]aj [n]



Example
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Fast Wavelet Transform

JGS Basics about Wavelets

2

2

2

2

h̄

ḡ

h̄

ḡ

aj
aj+1 aj+2

dj+2

dj+1
Decomposition

+ +h

g

h

g

aj+2

dj+2

dj+1

2

2

2

2

aj
aj+1

Reconstruction

h̄[n] = h[−n]
ḡ[n] = g[−n]



Examples (without subsampling)
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Examples (without subsampling)
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Examples (without subsampling)
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2D extension
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⇒ 2 variables⇒ φ(x , y) and ψ(x , y).



2D extension
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⇒ 2 variables⇒ φ(x , y) and ψ(x , y).

Two strategies

Building directly functions of two variables (ex : Gabor filters).
Using separable filters hence using two 1D transforms with
respect to each variable.



2D extension : direct construction
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Ex : Gabor wavelets, Morlet’s wavelet, Cauchy’s wavelets, . . .



2D extension : separable transforms
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Idea : we filter (1D transforms) first in one direction then in the other.
⇒ Direct extension of Mallat’s algorithm.

2

2

2

2

h̄

ḡ

h̄

ḡ

aj aj+1

d1j+1

d2j+12

2

h̄

ḡ d3j+1

Filters applied in
the vertical direction

Filters applied in
the horizontal direction



2D extension : inverse separable transform
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aj

Filters applied in
the vertical direction

Filters applied in
the horizontal direction

2

2

h

g

2

2

h

g

aj+1

d1j+1

d2j+1

d3j+1

+

+

2

2

h

g

+



2D transform example
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2D transform example
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2D transform example
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2D transform example
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Interpretation in the Fourier domain
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φ̂jψ̂2j ψ̂2j

ψ̂1j

ψ̂1j

ψ̂1j−1

ψ̂1j−1

ψ̂2j−1ψ̂2j−1

ψ̂3j−1

ψ̂3j−1

ψ̂3j−1

ψ̂3j−1

ν1

ν2



2D : a very particular world !
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Separable wavelets⇒ analysis with respect the horizontal and
vertical directions.

But in an image the information can follow any direction.

Separable wavelet
approximation

Desired approximation



Better families . . .
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It is possible to build frames adapted to the idea of direction,
eventually to the geometry itself.



Better families . . .
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It is possible to build frames adapted to the idea of direction,
eventually to the geometry itself.

⇒ ridgelets, curvelets, contourlets, edgelets, bandelets,. . .



Contourlets
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...
...

. . .

. . .

. . . . . . . . .

. . . . . . . . .

Directional Filter Bank 1

Directional Filter
Bank 2

Laplacian Pyramid

f

Laplacian Pyramid to get the
multi-resolution property
Directional filters based on
quinqux filters



Contourlets
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Applications

Denoising
Deconvolution
Compression
. . .
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Premises : notion of approximation theory
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Each coefficient contains more or less important information

Original



Premises : notion of approximation theory
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Each coefficient contains more or less important information

Original Wavelet Coefficients (Daubechies)



Premises : notion of approximation theory
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Each coefficient contains more or less important information

Original Reconstruction without the
highest frequencies



Premises : notion of approximation theory
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Soft thresholding
Let a threshold T

HT (x ,T ) =

{
0 if |x | 6 T
sign(x)(|x | − T ) if |x | > T

Hard thresholding)
Let a threshold T

HT (x ,T ) =

{
0 if |x | 6 T
x if |x | > T



Example of soft thresholding

JGS Basics about Wavelets

Original T = 50

T = 100 T = 1000



Example of hard thresholding
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Original T = 50

T = 100 T = 1000



Denoising
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Noise Wavelet coefficients of noise

The noise energy is distributed among all scales (low amplitude
coefficients).



Denoising
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⇒ we can use some thresholding to remove the noise
coefficients.

Image DWT Thresholding Inverse DWT Denoised image

Gaussian noise⇒ soft thresholding is optimal in theory but hard
thresholding provides visually better results.



Denoising : example

JGS Basics about Wavelets

Original Noisy Version



Denoising : example
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Original Soft thresh. on wavelet coefs



Denoising : example
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Original Hard thresh. on wavelet coefs



Denoising : example
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Original Soft thresh. on contourlet coefs



Denoising : example
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Original Hard thresh. on contourlet coefs



Compression : general principle
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Changing into a new
representation space Quantification

Coding schemeCompressed image

Image



Compression : JPEG2000
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RVB to YUV
conversion

Sub-sampling

Tiling
generation

Wavelet
transform

Quantification

Block division and
Bit planes processing

010111
Encoding
Storage



Compression : JPEG2000
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JPEG 1 :86 JPEG 1 :41

JPEG2000 1 :86 JPEG2000 1 :41



Wavelet Wonderland . . .
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From a theoretical point of view :

Other extensions : wavelet packets, rational wavelets, . . .

Useful tool in functional analysis (Besov spaces, Triebel-Lizorkin
spaces), . . .

Direct link with the approximation theory, . . .

Useful tool to solve differential equations, . . .



Wavelet Wonderland . . .
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From a theoretical point of view :

Other extensions : wavelet packets, rational wavelets, . . .

Useful tool in functional analysis (Besov spaces, Triebel-Lizorkin
spaces), . . .

Direct link with the approximation theory, . . .

Useful tool to solve differential equations, . . .

From the application point of view :

Video Compression (MPEG4, . . .)

Signal analysis : seismic, acoustic, . . .

Image processing : texture analysis, modeling, . . .

. . .



Some references

S.Mallat, “A Wavelet Tour of Signal Processing, 3 Ed”
M.Vetterli, “Wavelets and subband coding”
(http://infoscience.epfl.ch/record/33934/
files/VetterliKovacevic95_Manuscript.pdf?
version=1)
Y.Meyer, “Wavelets and operators” (3 volumes)
Wavelet Digest : http://www.wavelet.org
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