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ABSTRACT

We recently developed a new approach to get a stabilized image from a sequence of frames acquired through
atmospheric turbulence. The goal of this algorihtm is to remove the geometric distortions due by the atmosphere
movements. This method is based on a variational formulation and is efficiently solved by the use of Bregman
iterations and the operator splitting method. In this paper we propose to study the influence of the choice
of the regularizing term in the model. Then we proposed to experiment some of the most used regularization
constraints available in the litterature.
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1. INTRODUCTION

These last few years show an increase of interest in the development of mitigation algorithms to deal with the
atmospheric turbulence degradations. Indeed, turbulences can affect images in two major ways: a blurring effect
and random geometric distortions.
An interesting work about turbulence modelization for mitigation algorithms was made by Frakes.15, 16 The
authors modeled the turbulence phenomenon by using two operators:

fi(x) = Di(H(u(x))) + noise (1)

where u is the static original scene we want to retrieve, fi is the observed image at time i, H is a blurring kernel,
and Di is an operator which represents the geometric distortions caused by the turbulence at time i. Based on
this model, the idea is to try to inverse the two operators H and Di. Inversing H is a deconvolution problem
which will not be addressed here (we propose an original deconvolution approach in20), in this paper we will
focus on the stabilization problem to remove the geometric distortions.

In a recent work,29 we proposed a new variational framework based on a combination of a deformation flow
estimation and a nonlocal regularization term to retrieve a stabilized image from a set of acquired frames. Our
results clearly outperform other existing methods like the PCA-based algorithm26 or the Lucky-Region Fusion
approach.2 If our algorihtm is very efficient and needs very few images (20 input frames seem enough in all the
cases), its main drawback is the computational time needed to apply the nonlocal regularization. In this paper,
we propose to study the impact, in terms of image quality reconstruction, the choice of other regularizers.

The reminder of the paper is as follows. In section 2 we recall the model developped in.29 Section 3 presents
the different regularizer we choose to test instead of the nonlocal one. Corresponding experiments are presented
in section 4 and some conclusions are provided in section 5.
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Figure 1. The model of deformation used in the restoration process.

2. THE STABILIZATION MODEL

In,29 we proposed to use the following variational model (2) to find a restored image from a set of input frames.

min
u,φi

J(u) s.t. fi = Φiu+ noise, ∀i (2)

Where the observed image sequence is denoted {fi}i=1,...,N and u the true image that needs to be recon-
structed. Each φi corresponds to the geometric deformation on the i-th frame (note that the φi are the defor-
mations between the true image and the observed frame i and not the continuous movement flow from frame to
frame, see Fig. 1). The term J(u) is the regularizer applied to the reconstructed image, we will discuss its choice
in the next section.

Such models can be efficiently solved by the alternative optimization method, i.e. optimizing over the different
u, φi variables alternatively.

In our model (2), if we have a good guess on u, then the optimal φi can be estimated via certain optical flow
algorithms (e.g. the methods developed in3, 4, 33). On the other hand, for fixed {φi} and by setting

∑

i ‖Φiu−fi‖
2
2

be the data fidelity term, the model (2) can be rewritten as a constrained problem and efficiently solved via
Bregman Iterations30 (see29 for more details about the model).

The overall Algorithm 1 is as follows:

Algorithm 1 The Alternative Optimization Algorithm

Initialize: Start from some initial guess u. Let f̃i = fi.

while
∑

i ‖Φiu− fi‖
2 not small enough do

Estimate Φi which maps u onto fi via optical flow.

while
∑

i ‖Φiu− f̃i‖
2 not converge do

v ← u− δ
∑

i Φ
⊤

i (Φiu− f̃)

u← argminu J(u) +
λ
2δ
‖u− v‖2

end while

f̃i ← f̃i + fi − Φiu.

end while

The initial value of u is chosen as the temporal average of the frames; it is very blurry but gives a good initial
guess of the rough shape of the object. The quantity of frames determines the reconstruction quality. On the



Figure 2. The first three columns are example frames and the magnification of their top right part. The last column shows
our reconstructed result.

other hand, the more frames used, the longer the computational time required is. In our numerical experiments
we generally observe that we can always obtain satisfactory results with only 10-30 frames. We also note that the
choice of the optical flow scheme is not crucial. Experiments made via the use of the Black-Anandan algorithm,
which provides a precise flow estimation but slower, or the classic Lukas-Kanade algorithm, which is faster, didn’t
show notable differences. As we are interested in a fast algorithm, we finally retain the Lukas-Kanade scheme
in the rest of the paper. Figure 2 shows an example of the achieved result by this algorithm initially presented
in.29

3. CHOICE OF THE REGULARIZATION

As showed in the previous section, the algorithm contains a regularization step

u← argmin
u

J(u) +
λ

2δ
‖u− v‖2 (3)

We will now discuss the choice of J(u). In our original work,29 we choose to use the nonlocal total variation
(NLTV) as the regularizing term because it was successfully used in different restoration problems and is well
adapted for real images. In order to clarify our discussion, we recall the definition of NLTV.

J(u) = JNLTV (u) =

∫

Ω

√

∫

Ω

(u(y)− u(x))2 w(x, y)dydx (4)

where the weight w(x, y) corresponds to a similarity measure between patches centered on pixel x and y. As the
similarity between the patches increases, so does their impact on the regularized image. It was proven that NLTV
is well-adapted for images having textures or self-similarity. The main drawback of this regularizer is the time
needed to compute the weight w(x, y). In fact, the idea is to compare different patches all over the image which
represents a huge number of combinations. While designing a new faster way to compute w(x, y) is completely
out of the scope of this paper, we propose to study the impact of choosing other regularizers. Nowadays, some
regularizers are known to be efficients and considered as “classic” in the litterature. In addition to the NLTV,
we choose three other constraint terms. The probably most known in image processing is the standard total
variation (TV) proposed by Rudin et al.32 which preserves sharp edges in the image; it is defined by (5).



Figure 3. Input examples of the test sequence 1.

J(u) = JTV (u) =

∫

Ω

|∇u| (5)

The other two choices are based on the idea that a regularized image will have a sparse representation in some
“dictionary”. This concept is directly related to the compressive sensing theory. Here we adopt two possible
tight frames as our dictionaries: framelet6, 7 and curvelets.8–10, 14 If we denote D and C the operators which
respectively perform the framelet and curvelet expansions, the corresponding regularizers are defined by

J(u) = JD(u) = ‖Du‖1 and J(u) = JC(u) = ‖Cu‖1 (6)

Then depending on the choice of J(u), the regularization step depicted by (3) is equivalent to

• if J(u) = JTV (u), it is the famous Rudin-Osher-Fatemi model (ROF),

• if J(u) = JNLTV (u), it is the nonlocal total variation presented at the beginning of this section,

• if J(u) = JD(u) or J(u) = JC(u), it is an L1 − L2 minimization problem widely studied in the litterature.

All of these minimization problems can be efficiently solved by the use of the Split Bregman Iterations.
Corresponding Matlab routines are available in the Bregman Cookbook18 or in35 for NLTV.

4. EXPERIMENTS

We conduct our experiments on two distinct sequences (acquired during different field trials with different imaging
systems), figure 3 and 4 show some randomly choosen frames from these sequences. We apply the stabilization
algorithm based on the different regularizers presented in the previous section to these sequences. We keep the
same set of parameters for all tests except the number N of input frames used. We perform the tests with
N = 30 and N = 100 for sequence 1 and with N = 10 and N = 30 for sequence 2. Figures 5, 6, 7, 8 present
outputs of the algorithm for each regularizer. Clearly, no big differences can be observed from these results, on
these sequences, all regularizers perform well. Obviously TV is the fastest version of the algorithm while NLTV
is the most efficient one if textures are present in the image. The approaches based on frame sparsity can provide
a good tradeoff between reconstruction quality and computational speed.

5. CONCLUSION

In this paper we investigate the influence of the choice of the regularization term in a recent work dedicated to
turbulence stabilization. We tested four of the most used regularizers in the litterature: total variation, nonlocal
total variation, frame sparsity based on framelet or curvelet dictionaries. The results obtained on real images
show that no major differences can be observed. The “power” of the nonlocal total variation appears in the case
of textured images where it performs better but with the cost of additional computational time.



Figure 4. Input examples of the test sequence 2.

Figure 5. Restored images obtained from the different regularizers (30 input frames). From left to right: NLTV, TV,
Framelet, Curvelet.

Figure 6. Restored images obtained from the different regularizers (100 input frames). From left to right: NLTV, TV,
Framelet, Curvelet.

Figure 7. Restored images obtained from the different regularizers (10 input frames). From left to right: NLTV, TV,
Framelet, Curvelet.

Following these results, we can suggest that, if efficiency is the major aspect which may be reached, a nonlocal
total variation regularization must be prefered otherwise if the computational speed is critical, the classic total
variation is the best option. If both aspects are important, then a sparsity frame based algorithm can provides
the best tradeoff.



Figure 8. Restored images obtained from the different regularizers (30 input frames). From left to right: NLTV, TV,
Framelet, Curvelet.
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