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ABSTRACT

We propose a new way to correct for the non-uniformity (NU) and the noise in uncooled infrared-type images.
This method works on static images, needs no registration, no camera motion and no model for the non uniformity.
The proposed method uses an hybrid scheme including an automatic locally-adaptive contrast adjustment and a
state-of-the-art image denoising method. It permits to correct for a fully non-linear NU and the noise efficiently
using only one image. We compared it with total variation on real raw and simulated NU infrared images. The
strength of this approach lies in its simplicity, low computational cost. It needs no test-pattern or calibration
and produces no “ghost-artefact”.
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1. INTRODUCTION

Infrared (IR) imaging has proved to be a very efficient tool in a wide range of industry, medical, and military
applications. Infrared cameras are used to measure temperatures, signatures, to perform detection, etc. However,
the performance of the imaging system is strongly affected by the random spatial response of each pixel sensor.
Under the same illumination the readout of each sensor is different. It leads to a structured noise resulting in
a row or line pattern in the images (depending on the readout system). This “noise” is called fixed pattern
noise and produces “non uniformity” in the observed images. Theses differences between sensor readout are
due to mismatches in the fabrication process, among other issues1 and are stronger at longer wavelength such
as in infrared imaging.2 The readout of a pixel sensor is a non linear1 function of the incoming luminance.
The non uniformity is a serious practical limitation to both civilian and military applications - as it severely

Figure 1. On the left : an image (RAW) taken with an infrared camera. The non uniformity is so strong that it is hard
to distinguish between the noise and the underlying landscape. On such an image performing an identification, matching
pattern, etc. is almost hopeless. On the right the same image corrected with the proposed method.
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degrades image quality3 (see Fig. 1). For uncooled infrared cameras the problem is even worse because the
detector response evolves quickly with time. Therefore the correction cannot be done once and for all by the
manufacturer. It also means that we need to estimate, for each pixel, a function with little or no model at all and
using little or one image to aim a good correction. Indeed the use of numerous images to achieve the correction
leads to artefacts –those are called “ghosts artefacts” and are challenging to remove4–9– because of the sensor
drift.2, 10, 11 In other words, for each pixel, the correction at times t1 and t2 6= t1 are different. A correction
is so much needed, that in many uncooled infrared cameras a flap closes every 30 seconds to perform a partial
calibration.12, 13 This interrupts the image flow, which is calamitous for many applications. Thus, for uncooled
infrared cameras a periodic update of the non uniformity correction is required.
A good non uniformity algorithmic correction is a key factor in ensuring the best image quality and the robust-
ness of the downstream applications such as pattern recognition, image registration, etc.

In this paper we introduce locally adaptive version of our precedent work.14 A review of existing techniques
is proposed in section 3. A single image, fully automatic, non uniformity correction algorithm is detailed in
section 4 and generalized in section 5. It shows that motion compensation or accumulation algorithms are not
necessary to achieve a good image quality. The proposed method can compensate for a fully non linear non
uniformity, without any parametric model on the non uniformity side. It does not require motion, or motion
compensation, does not need a test pattern or calibration and does not produce any “ghost artifact”. A state
of the art denoising algorithm is modified to suit our context.The proposed method is illustrated in section 6 on
simulated non linear non uniformity in section Figs. 6-7, compared with a total variation based method (this
method is described in section 6.1) in section 6.2 and evaluated on real raw images from thermal infrared cameras
in section 6.3.

2. IMAGE ACQUISITION MODEL

An imaging sensor is a device that collects photons and converts them into charges. The majority of imaging
sensors are Charge-Coupled Devices (CCD). The standard readout technique of CCDs works for each row (or line)
independently and consists of transporting charges from the pixels to a counter (which produces the numerical
value to be read). Each pixel has its own (and unknown) transfer function response. Furthermore, for each
column the counter transfer function is different. The function resulting of the whole chain sensor-counter is not
linear.1 In the sequel we will assume without loss of generality (w.l.o.g.) that the non uniformity comes only
from the sensor part. It is the difference between (transfer) functions that produces the non uniformity and leads
to a structured noise resulting in a row or line pattern in the images. The perturbation model is

o(i, j, t) = φ(i,j,t) (u(i, j, t) + η(i, j, t)) , ∀(i, j, t) ∈ {1, ..., N} × {1, ...,M} × R+, (1)

where

• (i, j, t) ∈ {1, ..., N} × {1, ...,M} × R+ is the pixel at position (i, j) and time t ≥ 0;

• u(i, j, t) is the ideal (noiseless) landscape value;

• η(i, j, t) is a random photon noise;

• φ(i,j,t) : {0, ..., 255} 7→ {0, ..., 255} is the contrast change (transfer function) of the pixel sensor at position
(i, j) and time t ≥ 0;

• o(i, j, t) is the observed value at position (i, j) and time t ≥ 0.

Omitting the noise, φ(i,j,t)(x) represents the readout of the pixel (i, j) at time t for some incident radiance x.
At time t the transfer function of the pixel (i, j) and the transfer function of the counter are contained in φ(i,j,t)

(w.l.o.g). At each pixel sensor (i, j) and time t the photon (Poisson) noise η(i, j, t) is sensed (and added to the
ideal landscape pixel value u(i, j, t)), thus it also undergoes the contrast change function φ(i,j,t). Consequently, (1)
models thoroughly the whole acquisition process including the noise that is also modified by the non-uniformity



of the sensor array. It permits to deals with a realistic non linear sensor response1 contrarily to the classic
linear (gain/offset) approximation used in the literature. The goal of a non-uniformity correction algorithm is
to compensate for the local contrast changes induced by the φ(i,j,t) which means to apply some φ̃(i,j,t) such that

φ̃(i,j,t)

(

φ(i,j,t)

)

= g(x) for (i, j, t) ∈ {1, ..., N} × {1, ...,M} × R+. Notice that, in general, it is useless to ask for
g = Id since users, screens (gamma correction), etc. usually tune the contrast of the images at ease.

3. RELATED WORK

To get the rid of the non-uniformity many techniques have been developed over the years. It is possible to classify
them into two main kinds:

• Calibration based techniques consist in an equalization of the response to an uniform black body source
of radiations. They are not convenient for real time applications, since they force to interrupt the image
flow. (This calibration is usually automatic, a shutter closing in front of the lens periodically). They
usually assume that φ(i,j,t)(x) = x + b(i,j) ∀t ∈ [t1, t2[ (so called one point NUC, one black body) or that
φ(i,j)(x) = a(i,j)x + b(i,j) ∀t ∈ [t1, t2[ is linear (two points NUC using two black bodies). Thus it assumes
piecewise constants φ(i,j,t) on the time interval [t1, t2[. A new correction is performed every t2− t1 (because
of the sensor drift). Of course the two points NUC15 performs better.

• Scene based techniques, involving motion compensation or temporal accumulation. Such methods are
complex and require certain observation conditions (motion). They usually assume linear φ(i,j).

In the sequel, we will focus on scene based techniques as calibration based techniques require to interrupt the
camera which is calamitous in practice. Numerous algorithms have been reported in the literature to remove
the fixed pattern noise caused by the lack of a cross-pixels sensor equalization. Some algorithms estimate the
sensor parameters while, equivalently, others attempt at recovering the “true” landscape value u(i, j, t). These
algorithms process a sequence of images (o(i, j, t))t∈1,...,L, not a single frame. Thus they are subject to the
creation of “ghost artefacts”, the reason is discussed bellow. Most of them use a simplified (linear) model for
the transfer function of the pixel sensor:

o(i, j, t) = a(i,j,t) (u(i, j, t) + η(i, j, t)) + b(i,j,t), ∀(i, j, t) ∈ {1, ..., N} × {1, ...,M} × R+ (2)

There are methods like16 suggesting to equalize the mean and standard deviation (stddev) through time of each
pixel sensor by a linear transform. Such algorithms rely on the data diversity found in most of the video sequences
with some degree of motion. The key idea is

[H:] If all pixel sensors have seen the same landscape, they should have (at least) the same mean and same
standard deviation, namely

mean
t∈{1,...L}

(o(i, j, t)) = Cm ∀ (i, j) ∈ {1, ..., N} × {1, ...,M} (3)

stddev
t∈{1,...L}

(o(i, j, t)) = Cstd ∀ (i, j) ∈ {1, ..., N} × {1, ...,M}. (4)

To summarize the authors suggest to adjust the sensor readout using a linear transform to enforce the equalities
(3-4) above. But this is only possible if there is a long camera sequence with enough motion where each sensor
sweeps many different parts of the scene. Indeed a small window leads to little or no correction at all since it
weakens [H]. A subtle consequence of using long sequences is that the sensor (the contrast changes φ(i,j,t)) is
assumed to be constant over the whole sequence. If the user cannot move sufficiently the camera, the convergence
will be slow. This means that it is probable that between the beginning and the end of the sequence the φ(i,j,t)

will have changed because of the sensor drift.It leads to an inaccurate estimation of φ(i,j,t) : two pixels whom
have not seen the same radiance should not satisfy (3) or (4). Moreover since the sensor is not linear, there will be
some residuals. Theses residuals may are negligible except when the scene change suddenly: the approximation



is wrong, because it is based on past observations. It will take time to update the estimation, depending on
L. The residues of the correction as well as the previous landscape will remain superimposed in the subsequent
frames. Those are the “ghost artefacts”. The usual circumvent to those “ghost artefacts” is to restart the
learning process (forget some past data) if a new scene appears. Nevertheless, the detection of scene changes
may be treacherous particularly if it occurs in a small portion of the image (a new vehicle, etc.) since it may be
masked by the non uniformity (see Fig. 1).
A variant like, for instance,17 adjusts the minimum and the maximum of the readout values, assuming the time
histograms observed in each sensor are equals over a long enough time sequence:

mean
t∈{1,...L}

(o(i, j, t)) = C1 ∀ (i, j) ∈ {1, ..., N} × {1, ...,M} (5)

stddev
t∈{1,...L}

(o(i, j, t)) = C2 ∀ (i, j) ∈ {1, ..., N} × {1, ...,M}. (6)

This last method is called Constant Range.18 As pointed out by several authors5 the length L of the sequence
is a crucial factor of success here. There is not way to tune L a priori and two problems may arise:

• If L is too small and the estimation is wrong because all sensors have not seen the same landscape ([H] is
wrong);

• If L is too large and because of the approximation bias and time drift of the sensor behavior, the previous
images may appear as superimposed in the last ones. We retrieve the previously cited “ghost artefact”
effect.

There is a way to avoid the “ghost artefacts”,5 which consists in a reset of the estimation when the scene changes
too much. For example, in5 the authors use a simple threshold to perform scene change detection (but the level
of this threshold is not easy to tune in general). In19 the author state that “slow global motion and strong edges
in the scene are the main causes” of the non uniformity. Indeed non consistent with [H:] motions and/or bad
length L of the sequence used to enforce (3-4 or 5-6) lead to “ghost artefacts” because of the sensor drift. But, it
is only more visible near edges. Indeed the higher dynamic near edges weakens the linear approximation of the
correction. The idea of treating edges separately also appears, for example, in.20 To sum up, all these algorithms
require a long exposition time with a varying scene and a serious (and sometimes involuntary) camera motion.

There are numerous implementations and studies8, 18, 21–27 for these two major algorithms. A recursive filter16

estimates the parameters of the linear function which approximates the φ(i,j,t), or a Kalman filter is preferred.28

Other authors29, 30 propose a neural network based algorithm. Several other variants can be found in.19 The
registration based algorithms31 consider often only translations32 (but homographies should be used instead, at
least on a static scene). Creating a panorama has been proposed33 to obtain a ground truth, and to use it as
a calibration pattern. However, as pointed out,34 in presence of the structured fixed pattern noise occurring in
most infrared cameras, panoramas won’t lead to a good result. Indeed a mean act as a low pass filter thus low
frequencies of the non uniformity will remain in the produced images.
Recently in6 the authors minimize the total variation of the produced images. They also assume a linear model for
the non uniformity. It generalizes35 but works on image sequences. Thus, it is also subject to “ghost artefacts”.
In the following, the presented algorithm works on a single image. Furthermore, in the sequel we will omit the
time dependence t of the non uniformity (φ(i,j,t) := φ(i,j)).

4. PREVIOUS WORK: THE MIDWAY INFRARED CORRECTION

The goal of this section is to give the background (section 4.1) and details (see sections 4.2,4.3) of our previous
work14 (see36 for an on line use and implementation in C + +) as it is the starting point of the improvement
presented here in section 5.



4.1 The midway histogram equalization method

The midway algorithm was designed initially to correct for gain differences between cameras.37 It permits to
compare two images taken with different cameras more easily after their histograms have been equalized. This
algorithm was later extended to flicker correction.38 The midway equalization achieves much better and smoother
results than giving flat (uniform) histograms to images. The idea of the midway equalization is to replace the
(arbitrarily chosen) uniform histogram of classic uniform equalization by an histogram depending on the input
images. It is optimal in the sense of the Wasserstein (transport) distance; the midway histogram being at equal
distance of the histograms of input images. The midway equalization is defined and explained bellow.
Consider two cumulative histograms H1, H2 of two images. The midway cumulative histogram of the corrected
image is simply

Hmid−1 :=
H−1

1 +H−1
2

2
,

and this average can be extended to an arbitrary number of images (and to non constant weights). A precise
definition of the pseudo inverse is given in section 4.3. Once the midway histogram is computed, a monotone
contrast change is applied to images to specify Hmid as their common histograms. Thus, all images get the
midway histogram, which is the best compromise between all histograms (see Fig 2).

Figure 2. Two histograms h1, h2 (left side) and the corresponding midway histogram h mid (on the right), compared to
the direct histogram average, which would create two modes (centered at n1 and n2) and is therefore wrong. The uniform
equalization would destroy the grey level dynamic and create artefacts. It is not a good candidate to get good quality
images.

4.2 The idea

Since many infrared correction algorithms actually propose to equalize the temporal histograms of each pixel
sensor, the midway is quite adapted to get a better result than a simple equalization. Equalization can be
based on the fact that single columns (or lines, depending of the readout system) carry enough information by
themselves for an equalization. The images being continuous, the difference between two adjacent columns is
statistically small, implying that two neighboring histograms should be nearly equal. This hypothesis here is
similar to the temporal one [H] but is better suited to the decision to carry the equalization inside the image
itself. It does not require any additional hypothesis on the non uniformity (linearity, etc.). In other words, the
proposition is to transport the histogram of each column (or line) to the midway of histograms of neighboring
columns (resp. lines). In presence of strong fixed-pattern-noise (FPN) it will be useful to perform this sliding
midway method over a little more than two columns, because the FPN is not independent in general.

4.3 The midway infrared equalization algorithm (MIRE)

We give here the numerical details to implement the midway infrared equalization algorithm. It is fully automatic,
compensate for non linear non uniformity thus, it is well suited to be used in an infrared image denoising chain
(as a preprocessing for example). Assume in the sequel that the equalization is performed among the columns
of a discrete (8-bits w.l.o.g.) image o(i, j) ∈ {0, ..., 255} ∀(i, j) ∈ {1, ..., N} × {1, ...,M}. The “midway infrared
equalization (MIRE)” algorithm proceeds as follows



For each column j ∈ {1, ...,M};

1. Compute the cumulative histogram Hj of each column cj

Hj(l) =
1
N

∑l

k=0

∑N

i=1 1{o(i,j)=k};

2. For each column cj compute a local midway histogram H̃−1
j :=

∑

k∈(−n,...,n) g(k)H
−1
k+j using Gaussian

weights g(k) = gs(k) =
1

s
√
2π

e
−k2

2s2 with standard deviation s and n = round(4s) where,

H−1
j (l) = min{z ∈ {0, ..., 255}/Hj(z) ≥ l} ;

3. Specify the histogram of the column cj onto this midway histogram H̃j

d(i, j) = H̃−1
j (Hj(o(i, j))) ∀i ∈ {1, ..., N}.

Since we work on images separately the method is not affected by motions or scene changes. This completely
avoids “ghost artefacts”4, 5, 39 and any problem caused by the calibration parameters drifting over time. Notice
that contrarily to the classic literature algorithms it does not assume any additional properties (linearity, etc.)
on the non uniformity. The histogram specification step is also non linear in general. Thus, we can compensate
for fully non linear non uniformity. An algorithm selecting s is given in the next paragraph.

4.3.1 Automatically fitting the perfect s parameter
The non-uniformity leads to an increased total-variation norm. Hence, following the idea of,35 the smoothest
image is also the one with little or no non-uniformity at all. So the simplest way to find the good (s∗) parameter
automatically is :

s∗ = argmins||Is||TV −line

where Is is the image processed by the MIRE algorithm described above with the parameter s. The discrete
(line) total variation is defined by ||I||TV −line =

∑

i,j |(∇I)i,j |, (∇I)i,j = (Ii+1,j − Ii,j). The optimization can
be done by scanning a broad range of s. Choose a s step and a s max (s step = 0.5 and s max = 8 by default
in36 and never lead to unsatisfactory results). Start with s = 0, repeat : 1) process the image 2) increase s of
s step, then stop when s > s max.

The following ensures a certain safety of the proposed method, a fact that is confirmed by the experience of
Fig 3.
Theorem 1. If Hi i ∈ {−n, ..., n} are 2n + 1 cumulative histograms of the same landscape seen by 2n + 1

different columns of the sensor, and H−1
mid =

∑n

j=−n

H
−1
j

2n+1 then :

||Hmid −Htrue||2 ≤ max (
i∈{−n,...,n}

||Hi −Htrue||2)

Moreover if the Hi ∀i ∈ {−n, ..., n} from the 2n+ 1 columns of the sensor are i.i.d. and centered on Htrue then

||Hmid −Htrue||2 →
n→∞

0

5. THE ADAPTIVE AND DENOISING MIDWAY EQUALIZATION ALGORITHM
(ADMIRE)

In this section we describe the novelties proposed to our previous work (see section 4 and14, 36). It consists in
a modification of the MIRE (see section 4.3) to make it locally adaptive to the image. The need for a locally
adaptive scheme is illustrated bellow (see Fig. 5). This modification is detailed in section 5.1. The result of this
locally adaptive scheme is nevertheless corrupted by the noise (which may be strong as in Fig. 4). Thus, we
shall also embed a denoising scheme in order to increase the signal to noise ratio.



Figure 3. On the left : an uncorrupted test image (boat). On the middle : the result of the MIRE algorithm (s∗ = 0); the
produced image is the same. This experiment was done using.36 On the right : the result of the locally adaptive variant
of MIRE described in section 5.1 (s∗ = 0 everywhere in the image). As predicted the algorithms does not make the image
worse or create artefacts (safety check). Results on real raw images corrupted with non uniformity are detailed in section
6.

Figure 4. On the left : a real raw image produced by an infrared camera. On the right : the result of the locally adaptive
MIRE algorithm (see section 5.1). It is strongly corrupted by noise.

5.1 The adaptive midway equalization algorithm

There is no real justification (except simplicity) to keep a constant parameter s over the whole image. Indeed
the image can present different contents and structures in different areas. Thus focusing on different part of the
image the best s parameter may be different. A fact that is illustrated in Fig. 5. Thus, we propose to adapt the
s parameter of the MIRE algorithm locally. The proposed algorithm is :

1. For each s in s min : s max (see section 4.3.1) process the image by MIRE;

2. Decompose all images in patches (8× 8 patches always used here);

3. For each patch keep the one with smallest TV − line (the best one as in section 4.3.1);

4. Average and aggregate all patches to get the non uniformity corrected image.

5.2 The denoising step : anisotropic DCT threshold on overlapping patches

Since the processed images seem to be corrupted by a strong noise we propose to adapt40 to perform a good
denoising. Thus we propose to modify the DCT threshold denoising algorithm of40 which performs a DCT



Figure 5. On the left : a real raw image produced by an infrared camera. Middle : the result of the algorithm with the
parameter s = 1. On the right with s = 7.5. For example, focusing on a zone in the middle of the image the image with
s = 7.5 is nicer but, the zone below poles is bad. On the other hand in the image processed with s = 1 the zone in the
middle is still corrupted by the non uniformity. Thus, a fixed s parameter for the whole image will not lead to the best
quality possible everywhere.

threshold on sliding and overlapping patches. It is well suited with the previous step of section 5 which also use
patches. Moreover40 is unaffected∗ by residues of non uniformity. We kept 8× 8 patches as in40 for the examples
given below in section 6. The modification consists of the use of two different thresholds in the direction of the
non uniformity and the orthogonal direction. Indeed the coefficients in the direction of the lines should be bigger
(for an image corrupted by columns non uniformity noise as in Fig. 1) to denoise more. Indeed this direction
is more corrupted by residues of non uniformity. It leads to an anisotropic filtering of the patches. To sum up,
we suggest to perform an anisotropic DCT threshold on overlapping patches as a final denoising step. Provided
two thresholds Ti and Tj (denoising strongness) in the i (lines being indexed by i) and j direction of the image
the algorithm is :

1. Decompose the image sliding patches;

2. For each patch :

(a) Compute 2D-DCTII transform of the patch;

(b) Threshold the DCTII coefficients, with a threshold equal to Tj in the j direction and Ti (lines being
indexed by i) everywhere else;

(c) Calculate inverse 2D-DCT transform of the patch;

(d) (normalize by a factor of 1
4patch size∗patch size

);

3. Average and aggregate all patches to get the denoised image.

5.3 Implementation

The implementation is easy and was done with C++. To avoid border effects we used a reflection of the image
across borders. A C + + source code of the MIRE algorithm is available in,36 it allows on line experiments.
The demo performs the MIRE algorithm, permits to see and download the result and shows the s∗ parameter
computed by the algorithm. For the denoising step we refer to,42 where a C ++ source code is available (as well
as an on line demo). The overall chain of ADMIRE is :

1. Perform the adaptive midway equalization algorithm described in section 5.1;

2. Perform the anisotropic DCT threshold on overlapping patches described in section 5.2.

Of course a temporal extension (to videos) of the proposed method avoiding flicker (and “ghost artefacts”) is
possible, using a temporal midway.38

∗The non local means denoising41 has issues on some images (depending on the amount of residues of the non unifor-
mity). Indeed residues of non uniformity interfere with patch distances (even after a column by column normalization of
patches by their variance.)



5.4 Quality analysis; contrast invariant RMSE

In many cases reconstruction errors inherent to a method can be quantified using the Root-Mean-Squared-Error

RMSE (u, uest) :=
√ ∫

D
|u(x)−uest(x)|2dx
measure(D) . However, when a small contrast change occurs between the original and

the processed image, the RMSE can become substantial, while the images remain perceptually indistinguishable.
For example take an image u(m,n) defined over a sub-domain D ⊂ Z

2, and another one uest = u + 10. Then
RMSE(u, uest) = 10 is large but does not reflect the quality of the reconstruction uest. Comparatively, a
convolution with, for example, a Gaussian can give a smaller RMSE while making considerable damage. This
bias is avoided by normalizing the images before computing the RMSE. The principle of the normalization is
that two images related to each other by a contrast change are perceptually equivalent. Their distance should
reflect this fact and be zero. The midway equalization37 is best suited for that purpose, because it equalizes the
image histogram to a “midway” histogram depending on both images. By the midway operation both images
undergo a minimal distortion and adopt exactly the same histogram. Thus we shall define the contrast invariant
RMSE (RMSECI) by

RMSECI = RMSE(uestmid(u,uest)
, umid(u,uest))

where mid(u, uest)(= mid(uest, u)) is the midway histogram between u and uest. umid(u,uest) is the image u
specified on the mid(u, uest) histogram (having an histogram equal to mid(u, uest)) and uestmid(u,uest) is uest

specified on mid(uest, u).

6. EXPERIMENTS

Simulations of Fig. 6-7 are made using a nonlinear randomly generated model of NU. Results are quantified in
term of RMSE and RMSECI (the contrast invariant RMSE reflects more the intrinsic quality of the image).
They confirm the guess of visual improvement in quality. The comparisons with the total variation based method
is given in Figs. 8-9. The proposed algorithm outperforms it. The algorithm was run on real raw images, Figs.
10-15, thus for theses experiments it is not possible to compute a RMSE (as the groundtruth is unknown).
The proposed algorithm outperforms classic literature methods in real situation on real (non simulated) non
uniformity while using only one image.

6.1 Total variation based method

Let o(i, j) ∀(i, j) ∈ {1, ..., N} × {1, ...,M} be the observed image. The TV − line based method35 looks for a
constant k(j) to add to each column. So

||o(i, j) + k(j)||TV −line

is as small as possible. This boils down to the minimization of
∑

i |o(i, j + 1) + δ(j)− o(i, j)| for each column j
(notice that this sum involves only the column j and its neighboring column j+1). Then k(j+1) = k(j)+ δ(j),
where k(0) = c chosen so that the resulting image has the same mean as the observed image o. In practice this
can be done by :

1. Keep the first column intact (j = 0);

2. For each j ∈ {1, ...,M};

(a) Minimize
∑

i∈∈{1,...,N} |o(i, j + 1) + δ(j) − o(i, j)|, by trying all possible δ(j) constants (using the

quantification of the image);

3. Add a constant to the whole image so the output has the same mean as o.



Figure 6. On the left : an image with a strong simulated non linear non uniformity. On the right : the image processed
by the proposed algorithm. RMSE = 9.6629, RMSE

CI = 5.7314.

Figure 7. On the left : an image with a strong simulated non linear non uniformity. On the right : the image processed
by the proposed algorithm. RMSE = 8.7100, RMSE

CI = 7.3411.

6.2 Comparative experiments

The comparative experiments with the total variation were processed using Megawave † (resthline module35).
Experiments on real raw infrared images are shown in Figs. 8-9. The denoising step of ADMIRE has been
deactivated for these experiments to allow a fair comparison with the total variation (TV) based method (which
does not denoise). ADMIRE always shows a significant improvement on the TV based method and the final

†Megawave is available at megawave.cmla.ens-cachan.fr/



visual quality is very satisfactory.

Figure 8. On the left : a real raw image of a building taken by an infrared camera. Middle : the total variation based
method. Notice the artefacts created on the concrete stripes. The concrete stripes are at constant temperature thus, it
should be at a constant grey level. On the right the proposed method (we deactivate the DCT denoising to provide a fair
comparison).

Figure 9. On the left : a real raw image of an outdoor scene taken by an infrared camera. Middle : the total variation
based method. Notice the artefacts created bellow the poles. On the right the proposed method (we deactivate the DCT

denoising to provide a fair comparison).

6.3 Experiments on real raw images

The subsequent experiments permits to visualize the result of the proposed method on numerous real raw images.
We used different types of landscape to visualize the effect of the proposed non uniformity correction on edges,
textures, and at different level of time exposure (noise). The conclusion is that the quality is quite satisfactory
(see Figs.10-15).

7. DISCUSSION AND CONCLUSION

In this paper we start by modeling the image formation chain including the non uniformity and the Poisson (shot)
noise terms. From this model we deduce the correct algorithm (chain) to apply to an image in order to perform
a good non uniformity correction. We developed an image processing chain to correct for the non uniformity
and the noise. A single image locally adaptive non uniformity correction was designed. It can compensate for
fully non linear non uniformity, without any parametric model on the non uniformity side. It does not require
motion, or motion compensation, does not need a test pattern or calibration and does not produce any “ghost
artifact”. A state of the art denoising algorithm was modified according to the model to obtain a non uniformity
correction chain. Evaluations using both simulated and real raw images show that the approach performs an
efficient non uniformity correction in term of RMSE, contrast invariant RMSECI and visual image quality.
Comparisons were made with a total variation based method. The conclusion is that a single image, ghost-less
and non linear non uniformity correction is not only possible but efficient.
The next steps are first to obtain a robust noise estimation following, for example, the “percentile method”



Figure 10. On the left : a real raw image taken by an infrared camera. On the right the result of ADMIRE.

Figure 11. On the left : a real raw image taken by an infrared camera. On the right the result of ADMIRE.

Figure 12. On the left : a real raw image taken by an infrared camera. On the right the result of ADMIRE.

described in.43 Notice that to denoise automatically (without have to tune the Ti and Tj thresholds) theses
images a directional estimation of the noise variances are needed. The second step is to take advantage of movies



Figure 13. On the left : a real raw image taken by an infrared camera. On the right the result of ADMIRE.

Figure 14. On the left : a real raw image taken by an infrared camera. On the right the result of ADMIRE.

Figure 15. On the left : a real raw image taken by an infrared camera. On the right the result of ADMIRE.

to increase the quality while (still) ensuring the absence of any “ghost artefacts”. Indeed, if needed, the scene
change detection is way easier to perform just before the DCT denoising step.
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