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ABSTRACT

This paper introduces a new way to correct the non-uniformity (NU) in uncooled infrared-type images. The main
defect of these uncooled images is the lack of a column (resp. line) time-dependent cross-calibration, resulting
in a strong column (resp. line) and time dependent noise. This problem can be considered as a 1D flicker of the
columns inside each frame. Thus, classic movie deflickering algorithms can be adapted, to equalize the columns
(resp. the lines). The proposed method therefore applies to the series formed by the columns of an infrared
image a movie deflickering algorithm. The obtained single image method works on static images, and therefore
requires no registration, no camera motion compensation, and no closed aperture sensor equalization. Thus, the
method has only one camera dependent parameter, and is landscape independent. This simple method will be
compared to a state of the art total variation single image correction on raw real and simulated images. The
method is real time, requiring only two operations per pixel. It involves no test-pattern calibration and produces
no “ghost artifacts”.
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1. INTRODUCTION

Infrared (IR) imaging has proved to be a very efficient tool in a wide range of industry, medical, and military
applications. IR cameras are used to measure temperatures, IR signatures, detection, etc. However, the perfor-
mance of the imaging system is strongly affected by a random spatial response of each pixel sensor. Under the
same illumination the readout of each sensor is different. This is due to mismatches in the fabrication process,
among other issues.1 Furthermore for uncooled cameras the problem is even worse because the sensor response
non-uniformity is not stationary and slowly drifts in time. For this kind of camera a periodic update of the
non-uniformity-correction (NUC) is required.
A good non-uniformity-correction is a key success factor for any post processing such as pattern recognition,
image registration, etc. To get the rid of the non-uniformity, two main kinds of methods have been developed:

• Calibration based techniques consist in an equalization of the response to an uniform black body source
radiation. They are not convenient for real time applications, since they force to interrupt the image flow.
(This calibration is usually automatic, a shutter closing in front of the lens periodically).

• Scene based techniques, involving motion compensation or temporal accumulation. Such methods are
complex and require certain observation conditions.

The perturbation model is
zt(X) = f(X,t)(u0t(X)) + ηt(X)

where (X is the position and t is the time for the following) zt(X) is the observed value, u0t(X) is the ideal
landscape, f(X,t) is the (unknown) transfer function of the sensor, and ηt(X) is a random sensor Poisson noise.
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A non-uniformity correction algorithm aims at discovering f(X,t) or u0t(X) for each X and t. In this paper
we propose a single frame based algorithm and show that motion compensation or accumulation algorithms
are not necessary to achieve a good image quality. However, the proposed method can be viewed as a first
step fostering the success of more sophisticated motion based correction algorithms. These are slow while the
proposed algorithm is real time, and the obtained quality after a single frame correction might be sufficient for
many uses.
The paper is organized as follows. Section 2 presents related works. The new algorithm is described in section
3. Experiments on simulated, real, cooled and uncooled images are described in section 4. Section 5 contains a
discussion. Possible improvements are envisaged in section 6.

2. ANTERIOR WORK

Numerous algorithms have been reported in the literature to remove the fixed-pattern-noise caused by the lack
of a cross-column sensor equalization. Some algorithms estimate the sensor parameter and others attempt at
recovering the true landscape. Most of them use a simplified (linear) model for the transfer function of the pixel
sensor:

zt(X) = u0t(X)gt(X) + bt(X) + ηt(X),

where where (X is the position and t is the time for the following) zt(X) is the observed value, u0t(X) is the
landscape, gt(X) and bt(X) are the gains/ offsets (in place of f(X,t)) and ηt(X) is the random noise. (Nevertheless,
the true transfer function is non linear.) These algorithms process a sequence of images (zt)t∈1,...,N , not a single
frame. The proposed algorithm uses no registration, hence we will focus on single frame algorithms. There
are methods2 suggesting to equalize the mean and standard deviation (stddev) of each pixel sensor by a linear
transform. The key idea is

[H:] If all pixel sensors have seen the same landscape, they should have (at least) the same mean and same
standard deviation, namely







mean
t∈(1,...N)

(zt(X)) = Cm ∀ X

stddev
t∈(1,...N)

(zt(X)) = Cstd ∀ X.

So the authors suggest to adjust the sensor readout using a linear transform to obtain the equalities above.
But this is only possible if there is a long camera sequence with enough motion where each sensor sweeps many
different parts of the scene.
A variant3 adjusts the minimum and the maximum of the readout values, assuming the time histograms observed
in each sensor to become equal over a long enough time sequence:







min
t∈(1,...N)

(zt(X)) = C1 ∀ X

max
t∈(1,...N)

(zt(X)) = C2 ∀ X.

This last method is called Constant Range.4 As pointed out by several authors5 the length N of the sequence
is a crucial factor of success here. Two problems may arise:

• If N is too small and the estimation is wrong because all sensors have not seen the same landscape;

• If N is too large and because of the approximation bias and time drift of the sensor behavior, the previous
images may appear as ghosts in the last ones. This undesirable effect is known a “ghost artifact”.

There is a way to avoid the ghost artifacts,5 which consists in a reset of the estimation when the scene changes
too much. Their5 paper uses a simple threshold to perform scene change detection. But again, all this requires
a long exposition time with a varying scene or a serious camera motion.



There are several implementations for these two major algorithms. A recursive filter2 estimates the parameters
of the linear function which approximates the S-shaped transfer function of the sensor, or a Kalman filter6 is
preferred. Other authors7, 8 propose a neural network based algorithm, which requires a serious computational
power and is definitely not real time. The registration based algorithms9 consider often only translations (but
homographies should be used instead, at least on a static scene). Creating a panorama has been proposed10

to obtain a ground truth, and to use it as a calibration pattern. However, as pointed out,11 in presence of the
structured fixed-pattern-noise occurring in most IR cameras, the panorama won’t lead to a good result.

3. MIDWAY INFRARED CORRECTION

3.1 The midway histogram equalization method

The midway algorithm was designed initially to correct for gain differences between cameras.12 It permits to
compare two images taken with different cameras more easily after their histograms have been equalized. This
algorithm was later extended to flicker correction.13

Consider two cumulative histograms H1, H2. The midway cumulative histogram of the corrected image is simply

Hmid−1 =
H−1

1 +H−1
2

2
,

and this average can be extended to an arbitrary number of images. Once the midway histogram is computed,
a monotone contrast change is applied to image to specify H as its histogram. Thus, all images get the midway
histogram, which is the best compromise between all histograms (see Fig 1).

Figure 1. Two histograms h1, h2 (left side) and the corresponding midway histogram h (on the right), compared to the
direct histogram average, which would create two modes and is therefore wrong.

3.2 The idea

Since many IR correction algorithms actually propose to equalize the temporal histograms of each pixel sensor,
the midway is quite adapted to get a better result than a simple equalization. Yet, we propose a still much
simpler strategy. Equalization can be based on the fact that single columns (or lines, depending of the readout
system) carry enough information by themselves for an equalization. The images being continuous, the differ-
ence between two adjacent columns is statistically small, implying that two neighboring histograms are nearly
equal. This hypothesis here is similar to the temporal one [H] but is better suited to the decision to carry the
equalization inside the image itself. So the proposition is to transport the histogram of each column (or line) to
the midway of histograms of neighboring columns (resp. lines). In presence of strong fixed-pattern-noise (FPN)
it will be useful to perform this sliding midway method over a little more than two columns, because the FPN is
not independent in general.

Assume in the sequel that the equalization is performed with columns. The proposed algorithm proceeds as
follows.



Midway Infrared Equalization (MIRE)

• Compute the cumulative histogram Hi of each column ci;

• For each column ci compute a local midway histogram H̃mid(i)
−1 :=

∑

Φ
j∈(−N,...,N)

(j)H−1
i+j using Gaussian

weights Φ = Φσ with std-dev σ average;

• Specify the histogram of the column ci onto this midway histogram H̃mid(i).

The choice of the standard deviation σ of the Gaussian depends only on the camera, and not on the landscape.
Thus, it can be fixed once and for ever for each camera. Since we work on images separately the method is not
affected by motions or changes of scene, which completely avoids ”ghost artifacts” and any problem caused by
the calibration parameters drifting over time. A good σ is simply obtained by

• Trying with a small parameter;

• Increasing it till a good visual image quality is reached.

Yet an automatic method for estimating σ and obtaining a parameterless methods is as follows.

Automatically fitting the perfect parameter
The non-uniformity leads to an increased total-variation norm. Hence the smoothest image is also the one with
little or no non-uniformity at all. So the simplest way to find the good parameter automatically is :

σ∗ = argminσ||Iσ||TV
∗,

where Iσ is the image processed by MIRE with the parameter σ. The optimization could be done by a dichotomy
on σ. See Fig 10 for an illustration of this.

Theorem 1. If hi i ∈ 1, ..., N are N histograms of the same landscape seen by N different columns of the sensor,

and Hmid =
∑N

j=1

H
−1

j

N
then :

||hmid − htrue||2 ≤ max (
i∈(1,...,N)

||hi − htrue||2)

Moreover if the hi ∀i ∈ (1, ..., N) from the N columns of the sensor are i.i.d. and centered on htrue then

||hmid− htrue||2 →
N→∞

0

3.3 Implementation

The implementation is easy and was done with Matlab. To avoid border effects we used a reflection of the image
across borders. The computation times are shown for several image sizes. An on-line demo will be shortly
available at www.ipol.im.

Times are shown in seconds on a core duo T7250 running Ubuntu and Matlab. We used Timeit (written
by S. Eddins) to avoid time variation of the multitasking OS.
Of course a temporal extension of the algorithm to avoid temporal flicker is possible, using a temporal midway.13

∗see 4.1 for ||.||TV definition.



Image size 512*512 320*220
Seconds 2.8 1.2

Figure 2. Computation time for various sizes and quantifications in seconds (using Matlab). This time could be made to
real with any standard processor.

3.4 Quality analysis

Our first criterion is the visual image quality. In the simulated cases the results will be evaluated by the RMSE,

RMSE(I, Ĩ) =

√

∑

i,j |I(i, j)− Ĩ(i, j)|2

M.N
,

where I is the groundtruth image, Ĩ is the restored one and M , N are the image side lengths.

4. EXPERIMENTS

4.1 Total variation based method

Let zt(x, y) be the acquired image. The TV based method14 looks for a constant k(y) to add at each column. So

||zt(x, y) + k(y)||TV

is as small as possible, where ||I||TV =
∑

i,j |(∇I)i,j | and (∇I)i,j =

(

Ii+1,j − Ii,j
Ii+1,j − Ii,j

)

. So this amounts to the

simple minimization of
∑

x |zt(x, y +1)+ δ(y)− zt(x, y)| for each column y. Then k(y+ 1) = k(y) + δ(y), where
k(0) = c chosen so that the resulting ITV

t and the input images zt have the same mean.

4.2 Comparative experiments

Simulations (Figs 3-4) are made using a linear randomly generated model of NU. The comparative experiments of
MIRE with Total Variation (TV) were processed using a Megawave † (resthline module14). Results are quantified
in term of RMSE and confirm the guess of visual improvement in quality.
Real experiments are shown using cooled (Fig 5) and uncooled (Fig 6) cameras. For comparison purpose images
are shown with the same variance in every experiments.
MIRE always shows a significant improvement on TV and the final visual quality is overall very satisfactory.

5. DISCUSSION AND CONCLUSION

In this paper a new way to correct for the uncooled IR non-uniformity was proposed. Evaluations using both
simulated and real images –from both cooled and uncooled cameras– show that the approach performs an
efficient non-uniformity correction (in term of RMSE and visual image quality). Comparison was made with
a total variation based method. This simple algorithm is well suited for a parallel implementation, since each
column could be processed independently from the others. Furthermore since we process each image of the
stream separately ”ghost artifacts” are not present and the velocity of the parameter drift insignificant.
Eventually the output seems to be more corrupted with gaussian temporal noise than with residues of unperfect
correction of the non-uniformity. This enables the application of any standard image denoising algorithm, such
as NL-Means or the wavelet thresholding, etc. See Fig 8. The only failure case we met, shown in Fig 7, appeared
with a small (64*64) simulated textured image. There were not enough bins in the histograms to equalize. The
results could still be enhanced by using a registration technique for badly corrupted images. This extension is
envisaged in section 6.

†Mégawave is available at megawave.cmla.ens-cachan.fr/



Figure 3. Image 1 : The groundtruth (left) the simulated FPN (right, RMSE=0.1932).

Figure 4. The TV based method (left, RMSE=0.1817), MIRE (right, RMSE=0.1715).



Figure 5. Top left : RAW (cooled camera), top right : TV based method, at the bottom : MIRE.



Figure 6. Top left : RAW (cooled camera), top right : TV based method, at the bottom : MIRE.



Figure 7. The only case where MIRE failed, on a textural 64x64 image. Top-left the groundtruth, top right the observed
(RMSE:0.7033). Bottom left : the TV method (RMSE:1.2681), bottom right : MIRE (RMSE:0.6833).

Figure 8. Before and after NL-means denoising, used with default parameters, available at www.ipol.im. Both are X2
zoomed.



6. FUTURE WORK

Here is how MIRE could be combined with motion estimation:

1. First use MIRE

2. Apply a time registration

3. For each line parallel to the motion proceed as follows:

• Choose a pixel as a reference.

• Use motion to propagate this information in the direction of the motion.

• Stop after the number of points is sufficient to the estimation of the non uniformity.

At this step for each pixel sensor we have several points to estimate the transfer function. Hence we could
perform any kind of interpolation to estimate a complete transfer function. Then we could compensate for linear
as well as non linear uniformity since with N images we will know up to N points of the function. We don’t
need to perform a panorama to estimate the landscape like in.10 It is another point of view on the problem,
since these authors focus on estimating the landscape (difference of response between the perfect sensor and the
real one) while the envisaged method is to obtain an estimation of the uniformity directly (more precisely an
estimation of the difference of uniformity between an arbitrary sensor and the others).
If we get an image with strong lining artifact in the motion direction, we have two possibilities : either to use a
new motion along another direction or using a single frame algorithm like MIRE.
Fig 9 presents some results on simulated images. We simulated a movie with a (pixelian) translational motion
and a NU. The NU remained constant for the whole sequence and temporal gaussian noise was added to each
image. Then we applied step 3 (assuming the motion is known).

Figure 9. Using the motion, from left to right : the groundtruth, observed (one in the whole sequence), restored.



7. APPENDIX.

Figure 10. First :RAW (uncooled camera), then from left to right: increasing the σ parameter. TV norms : 8.07, 7.44,
7.38, 7.39, 7.36, 7.59, 7.62, 7.85, 8.07.
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