

Décomposition d'images: principes et application à la détection de réseau routier

Séminaire Laboratoire SIC - Poitiers (15/03/2007)

Jérôme Gilles

jerome.gilles@etca.fr

Plan de l'exposé

- Introduction,
- Décomposition d'image u + v,
- Extension au cas bruité,
- Evaluation des algorithmes,
- Application: détection de réseaux routiers,
- Conclusions Perspectives.

Introduction (1/2)

Problématique

Détection de cibles camouflées

Introduction (1/2)

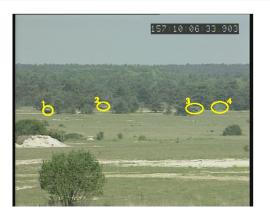
Problématique

Détection de cibles camouflées

Introduction (1/2)

Problématique

Détection de cibles camouflées



Introduction (2/2)

Exemple de textures

Introduction (2/2)

Exemple de textures

Caractéristiques des textures

- o notion d'échelle,
- répétition de motifs.

Plan

- Introduction,
- Décomposition d'image u + v,
- Extension au cas bruité,
- Evaluation des algorithmes,
- Application: détection de réseaux routiers,
- Conclusions Perspectives.

Décomposition «bas niveau»

- Fourier: décomposition à l'aide de sinus et cosinus,
- Ondelettes: utilisation de fonctions «localisée» (espace de Besov),
- Autres espaces fonctionnels (Sobolev,...).

Décomposition «bas niveau»

- Fourier: décomposition à l'aide de sinus et cosinus,
- Ondelettes: utilisation de fonctions «localisée» (espace de Besov),
- Autres espaces fonctionnels (Sobolev,...).

Décomposition «bas niveau»

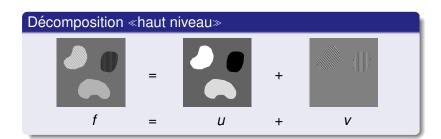
- Fourier: décomposition à l'aide de sinus et cosinus,
- Ondelettes: utilisation de fonctions «localisée» (espace de Besov),
- Autres espaces fonctionnels (Sobolev,...).

Décomposition «bas niveau»

- Fourier: décomposition à l'aide de sinus et cosinus,
- Ondelettes: utilisation de fonctions «localisée» (espace de Besov),
- Autres espaces fonctionnels (Sobolev,...).

Décomposition «bas niveau»

- Fourier: décomposition à l'aide de sinus et cosinus,
- Ondelettes: utilisation de fonctions «localisée» (espace de Besov),
- Autres espaces fonctionnels (Sobolev,...).



L'algorithme de Rudin-Osher-Fatemi (ROF)

Restauration des objets

 But: retrouver l'image d'intérêt (u) dans une image bruitée (f),

L'algorithme de Rudin-Osher-Fatemi (ROF)

Restauration des objets

- But: retrouver l'image d'intérêt (u) dans une image bruitée (f),
- Choix de l'espace: BV (Bounded Variation)

L'algorithme de Rudin-Osher-Fatemi (ROF)

Restauration des objets

- But: retrouver l'image d'intérêt (u) dans une image bruitée (f),
- Choix de l'espace: BV (Bounded Variation)

Fonctionnelle ROF

$$F_{\lambda}^{ROF}(u) = J(u) + \lambda \|f - u\|_{L^2}^2$$

où $f \in L^2(\mathbb{R})$, $u \in BV$ et $J(u) = ||u||_{BV}$.

Point de vue de la décomposition

Reformulation

Contrainte: f = u + v

$$\Longrightarrow F_{\lambda}^{ROF}(u) = J(u) + \lambda \|v\|_{L^2}^2$$

Point de vue de la décomposition

Reformulation

Contrainte: f = u + v

$$\Longrightarrow F_{\lambda}^{ROF}(u) = J(u) + \lambda ||v||_{L^2}^2$$

Propriétés

Soit $g_N(x) = \cos(Nx_1)\theta(x)$ alors

$$\|g_N\|_{L^2} pprox rac{1}{\sqrt{2}} \|\theta\|_{L^2} ext{ et } J(g_N) = rac{N}{2\pi} \|\theta\|_{L^1}$$

Point de vue de la décomposition

Reformulation

Contrainte: f = u + v

$$\Longrightarrow F_{\lambda}^{ROF}(u) = J(u) + \lambda ||v||_{L^{2}}^{2}$$

Propriétés

Soit $g_N(x) = \cos(Nx_1)\theta(x)$ alors

$$\|g_N\|_{L^2}pprox rac{1}{\sqrt{2}}\| heta\|_{L^2}$$
 et $J(g_N)=rac{N}{2\pi}\| heta\|_{L^1}$

Inadapté!

 \Longrightarrow ne gère pas les textures en tant que composante à part entière.

Modèle de décomposition

Algorithme de Y.Meyer

$$F_{\lambda}^{YM}(u,v) = J(u) + \lambda ||v||_{G}$$

où
$$f = u + v$$
, $f \in G$, $u \in BV$, $v \in G$.

Modèle de décomposition

Algorithme de Y.Meyer

$$F_{\lambda}^{YM}(u,v) = J(u) + \lambda ||v||_{G}$$

où f = u + v, $f \in G$, $u \in BV$, $v \in G$.

Modèle de décomposition

Algorithme de Y.Meyer

$$F_{\lambda}^{YM}(u,v) = J(u) + \lambda ||v||_{G}$$

où f = u + v, $f \in G$, $u \in BV$, $v \in G$.

Propriété de $\|.\|_G$

Problème!

$$\|v\|_{G} = \inf_{g} \left\| \left(|g_{1}|^{2} + |g_{2}|^{2} \right)^{\frac{1}{2}} \right\|_{L^{\infty}}$$

où
$$g=(g_1,g_2)\in L^\infty\times L^\infty$$
, avec $v=\operatorname{div} g$

Algorithmes numériques (1/2)

Approche de Osher-Vese (2002)

Propriété: $\forall f \in L^{\infty}, \|f\|_{L^{\infty}} = \lim_{p \to \infty} \|f\|_{L^{p}}.$

$$F_{\lambda,\mu,p}^{OV}(u,g) = J(u) + \lambda \|f - (u + \text{div } g)\|_{L^2}^2 + \mu \left\| \sqrt{g_1^2 + g_2^2} \right\|_{L^p}$$

⇒ trois EDP couplées.

Algorithmes numériques (1/2)

Approche de Osher-Vese (2002)

Propriété: $\forall f \in L^{\infty}, \|f\|_{L^{\infty}} = \lim_{p \to \infty} \|f\|_{L^{p}}.$

$$F_{\lambda,\mu,p}^{OV}(u,g) = J(u) + \lambda \|f - (u + \operatorname{div} g)\|_{L^2}^2 + \mu \left\| \sqrt{g_1^2 + g_2^2} \right\|_{L^p}$$

 \Longrightarrow trois EDP couplées.

Hypothèse non respectée et instabilités numériques

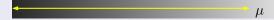
Algorithmes numériques (2/2)

```
Approche de JF. Aujol Idée: restriction à G_{\mu}=\{v\in G/\|v\|_{G}\leqslant \mu\}
```

Algorithmes numériques (2/2)

Approche de JF. Aujol

Idée: restriction à $G_{\mu} = \{ v \in G/\|v\|_G \leqslant \mu \}$



Fonctionnelle

$$F_{\lambda,\mu}^{AU}(u,v) = J(u) + J^*\left(\frac{v}{\mu}\right) + (2\lambda)^{-1}\|f - u - v\|_{L^2}^2$$

où
$$(u,v)\in BV(\Omega) imes G_{\mu}(\Omega).$$

Algorithmes numériques (2/2)

Approche de JF. Aujol

Idée: restriction à $G_{\mu} = \{ v \in G / \|v\|_G \leqslant \mu \}$

Fonctionnelle

$$F_{\lambda,\mu}^{AU}(u,v) = J(u) + J^*\left(\frac{v}{\mu}\right) + (2\lambda)^{-1}\|f - u - v\|_{L^2}^2$$

où $(u,v)\in BV(\Omega) imes G_{\mu}(\Omega).$

⇒ Utilisation des projecteurs non-linéaires de Chambolle:

$$\hat{u} = f - \hat{v} - P_{G_{\lambda}}(f - \hat{v})$$
$$\hat{v} = P_{G_{\mu}}(f - \hat{u})$$

Projecteur de Chambolle

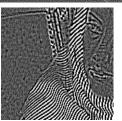
Théorème

Si $au < \frac{1}{8}$ alors $\lambda {
m div}\,(p^n)$ converge vers $P_{G_\lambda}(g)$ quand $n \to +\infty$

où

$$p_{i,j}^{n+1} = \frac{p_{i,j}^n + \tau \left(\nabla \left(\operatorname{div}\left(p^n\right) - \frac{g}{\lambda}\right)\right)_{i,j}}{1 + \tau \left|\left(\nabla \left(\operatorname{div}\left(p^n\right) - \frac{g}{\lambda}\right)\right)_{i,j}\right|}$$

Exemple



Autres modèles

$BV-L^1$

$$F_{\lambda}(u,v) = J(u) + \lambda \|v\|_{L^{1}}$$

BV-Hilbert

$$F_{\lambda}(u, v) = J(u) + \lambda ||v||_{\mathcal{H}}$$

BV-Besov

$$F_{\lambda}(u,v) = J(u) + \lambda ||v||_{\dot{B}^{\infty}_{-1,\infty}}$$

Cas des espaces de Besov

Voir les travaux de L.Triet et L.Vese (UCLA)

Plan

- Introduction,
- Décomposition d'image u + v,
- Extension au cas bruité,
- Evaluation des algorithmes,
- Application: détection de réseaux routiers,
- Conclusions Perspectives.

Cas des images bruitées

Le bruit est vu comme un phénomène oscillant!

Cas des images bruitées

Le bruit est vu comme un phénomène oscillant!

Cas des images bruitées

Le bruit est vu comme un phénomène oscillant!

 \implies nécessite un modèle du type u + v + w.

Modèle u + v + w adaptatif: principe

Hypothèses

• textures $\in G_{\mu_1}$ et bruit $\in G_{\mu_2}$ où $\mu_1 >> \mu_2$,

$$\mu_2$$
 μ_1

Modèle u + v + w adaptatif: principe

Hypothèses

• textures $\in G_{\mu_1}$ et bruit $\in G_{\mu_2}$ où $\mu_1 >> \mu_2$,

```
\mu_2 \mu_1
```

- adaptabilité locale au contenu de l'image.
- renforcer la régularisation en l'absence de textures,

Modèle u + v + w adaptatif: principe

Hypothèses

• textures $\in G_{\mu_1}$ et bruit $\in G_{\mu_2}$ où $\mu_1 >> \mu_2$,

```
\mu_2 \mu_1
```

- adaptabilité locale au contenu de l'image.
- renforcer la régularisation en l'absence de textures,
- $\Longrightarrow \nu(i,j) \in]0; 1[$ (carte des régions),

Modèle u + v + w adaptatif: formulation

Algorithme adaptatif

$$F_{\lambda,\mu_{1},\mu_{2}}^{JG}(u,v,w) = J(u) + J^{*}\left(\frac{v}{\mu_{1}}\right) + J^{*}\left(\frac{w}{\mu_{2}}\right) + (2\lambda)^{-1} \|f - u - \nu_{1}v - \nu_{2}w\|_{L^{2}}^{2}$$

où $\nu_1 = 1 - \nu_2$ (cartes locales)

Modèle u + v + w adaptatif: formulation

Algorithme adaptatif

$$F_{\lambda,\mu_{1},\mu_{2}}^{JG}(u,v,w) = J(u) + J^{*}\left(\frac{v}{\mu_{1}}\right) + J^{*}\left(\frac{w}{\mu_{2}}\right) + (2\lambda)^{-1} \|f - u - \nu_{1}v - \nu_{2}w\|_{L^{2}}^{2}$$

où $\nu_1 = 1 - \nu_2$ (cartes locales)

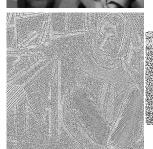
Algorithme numérique

$$\hat{u} = f - \nu_1 \hat{v} - \nu_2 \hat{w} - P_{G_{\lambda}} (f - \nu_1 \hat{v} - \nu_2 \hat{w})$$

$$\hat{v} = P_{G_{\mu_1}} \left(\frac{f - \hat{u} - \nu_2 \hat{w}}{\nu_1} \right)$$

$$\hat{w} = P_{G_{\mu_2}} \left(\frac{f - \hat{u} - \nu_1 \hat{v}}{\nu_2} \right)$$

Modèle u + v + w adaptatif: résultat



Modèle u + v + w de Besov

Modèle

Bruit
$$\iff$$
 distribution $\in E_{\delta} = \left\{ w \in \dot{B}_{-1,\infty}^{\infty} / \|w\|_{\dot{B}_{-1,\infty}^{-\infty}} \leqslant \delta \right\}$

$$F_{\lambda,\mu,\delta}^{AG2}(u,v,w) = J(u) + J^* \left(\frac{v}{\mu}\right) + B^* \left(\frac{w}{\delta}\right) + (2\lambda)^{-1} \|f - u - v - w\|_{L^2}^2$$

$$\begin{split} \hat{u} &= f - \hat{v} - \hat{w} - P_{G_{\lambda}}(f - \hat{v} - \hat{w}) \\ \hat{v} &= P_{G_{\mu}}(f - \hat{u} - \hat{w}) \\ \hat{w} &= P_{E_{\delta}}(f - \hat{u} - \hat{v}) = f - \hat{u} - \hat{v} - WST(f - \hat{u} - \hat{v}, 2\epsilon) \end{split}$$

Modèle u + v + w de Besov

Modèle

Bruit \iff distribution $\in E_{\delta} = \left\{ w \in \dot{B}_{-1,\infty}^{\infty} / \|w\|_{\dot{B}_{-1,\infty}^{-\infty}} \leqslant \delta \right\}$

$$F_{\lambda,\mu,\delta}^{AC2}(u,v,w) = J(u) + J^*\left(\frac{v}{\mu}\right) + B^*\left(\frac{w}{\delta}\right) + (2\lambda)^{-1} \|f - u - v - w\|_{L^2}^2$$

Algorithme numérique

$$\begin{split} \hat{u} &= f - \hat{v} - \hat{w} - P_{G_{\lambda}}(f - \hat{v} - \hat{w}) \\ \hat{v} &= P_{G_{\mu}}(f - \hat{u} - \hat{w}) \end{split}$$

 $\hat{w} = P_{E_{\delta}}(f - \hat{u} - \hat{v}) = f - \hat{u} - \hat{v} - WST(f - \hat{u} - \hat{v}, 2\delta)$

Modèle u + v + w de Besov

Modèle

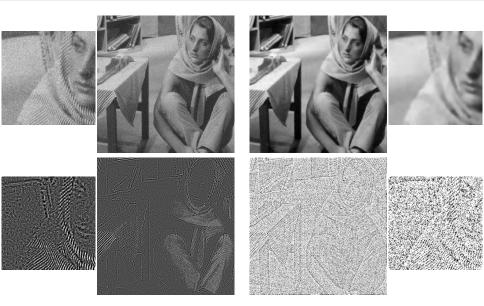
Bruit \iff distribution $\in E_{\delta} = \left\{ w \in \dot{B}^{\infty}_{-1,\infty} / \|w\|_{\dot{B}^{-\infty}_{-1,\infty}} \leqslant \delta \right\}$

$$F_{\lambda,\mu,\delta}^{AC2}(u,v,w) = J(u) + J^*\left(\frac{v}{\mu}\right) + B^*\left(\frac{w}{\delta}\right) + (2\lambda)^{-1} \|f - u - v - w\|_{L^2}^2$$

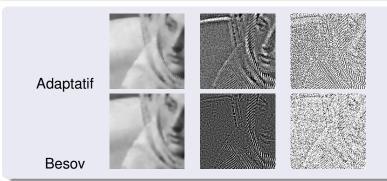
Algorithme numérique

$$\hat{u} = f - \hat{v} - \hat{w} - P_{G_{\lambda}}(f - \hat{v} - \hat{w})$$
 $\hat{v} = P_{G_{\mu}}(f - \hat{u} - \hat{w})$
 $\hat{w} = P_{E_{\delta}}(f - \hat{u} - \hat{v}) = f - \hat{u} - \hat{v} - WST(f - \hat{u} - \hat{v}, 2\delta)$

Modèle u + v + w de Besov: résultat



Comparaison visuelle



Comparaison

- textures mieux débruitées dans le modèle de Aujol et Chambolle,
- plus de résidu dans le bruit du modèle de Aujol et Chambolle,
- les contours "abîmés" dans le modèle de Aujol et Chambolle.

Aujourd'hui...

- apport de la géométrie en analyse multi-résolution,
- résultats de débruitage prometteurs avec les curvelets de Candès et Donoho,
- implémentation numérique difficile.

Aujourd'hui...

- apport de la géométrie en analyse multi-résolution,
- résultats de débruitage prometteurs avec les curvelets de Candès et Donoho,
- implémentation numérique difficile.

Aujourd'hui...

- apport de la géométrie en analyse multi-résolution,
- résultats de débruitage prometteurs avec les curvelets de Candès et Donoho,
- implémentation numérique difficile.

Aujourd'hui...

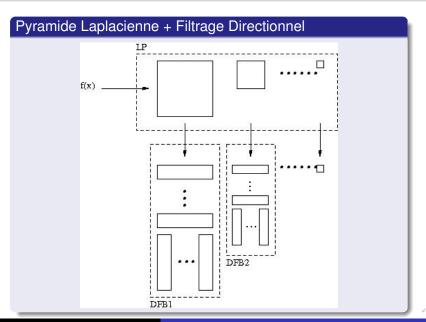
- apport de la géométrie en analyse multi-résolution,
- résultats de débruitage prometteurs avec les curvelets de Candès et Donoho,
- implémentation numérique difficile.

Point de vue numérique

Minh Do et Vetterli proposent l'utilisation de:

- la théorie des bancs de filtres
- la théorie des frames
- ⇒ Pyramidal Directionnal Filter Bank (PDFB)

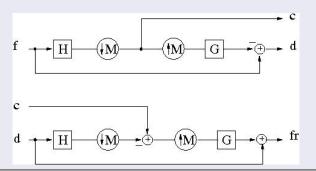
Principe des contourlets



Décomposition pyramidale

Avantages

- banc de filtre,
- filtres orthogonaux ⇒ frame ajustée,
- reconstruction basée sur l'opérateur dual.



Filtrage directionnel

Principe

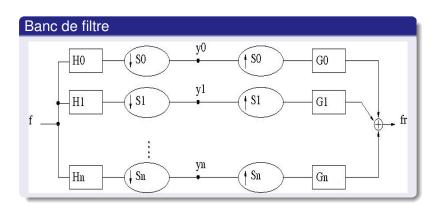
- filtre quincunx 2 canaux,
- opérateur de "réarrangement" (déformation de l'image)

Exemple

Filtrage directionnel

Principe

- filtre quincunx 2 canaux,
- opérateur de "réarrangement" (déformation de l'image)



Filtrage directionnel

Principe

- filtre quincunx 2 canaux,
- opérateur de "réarrangement" (déformation de l'image)

Pavage fréquentiel w1 0 1 2 3 4 6 5 5 6 6 w2

frame de contourlets

Théorème

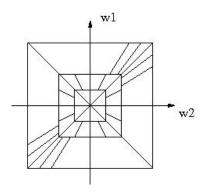
 $\forall \{I_j\}_{j \leq j_0}$ la famille

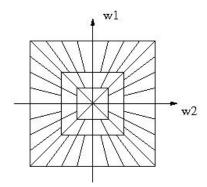
$$\left\{\phi_{j_0,n}(t); \rho_{j,k,n}^{(l)}(t)\right\}_{j \leq j_0, 0 \leq k \leq 2^{l_j}-1, n \in \mathbb{Z}^2}$$

est une *frame* ajustée de $L_2(\mathbb{R}^2)$ de borne 1. Et l'on a

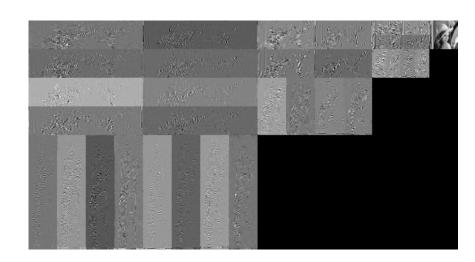
$$L_2(\mathbb{R}^2) = V_{j_0} \oplus \left(igoplus_{j \leq j_0} W_j^{(I)}
ight)$$

Pavage du domaine fréquentiel





Exemple de transformée



Exemple d'approximation

Soft thresholding: 5% des coefficients

Ondelettes

Contourlettes

Exemple d'approximation

Soft thresholding: 5% des coefficients

Ondelettes

Contourlettes

Utilisation pour la décomposition

Apport de la géométrie

Remplacement: ondelettes \Longrightarrow contourlettes

Utilisation pour la décomposition

Apport de la géométrie

Remplacement: ondelettes ⇒ contourlettes

ullet Espaces de contourlettes $CT^s_{
ho,q}$ et $\|.\|_{CT^s_{
ho,q}}$

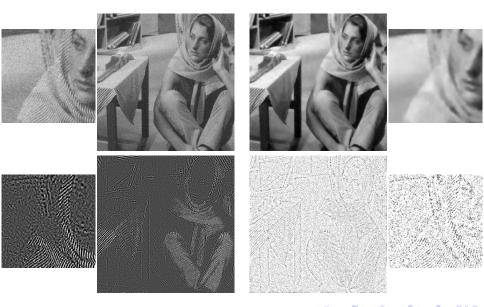
Utilisation pour la décomposition

Apport de la géométrie

Remplacement: ondelettes ⇒ contourlettes

- ullet Espaces de contourlettes $CT^s_{
 ho,q}$ et $\|.\|_{CT^s_{
 ho,q}}$
- $\begin{array}{l} \bullet \ \ \text{Seuillage doux} \Longleftrightarrow \text{projection sur} \\ CT_{\delta} = \Big\{ f \in CT^{\infty}_{-1,\infty} / \|f\|_{CT^{\infty}_{-1,\infty}} \leqslant \delta \Big\}. \end{array}$

Modèle u + v + w avec contourlettes: résultat



Plan

- Introduction.
- Décomposition d'image u + v,
- Extension au cas bruité,
- Evaluation des algorithmes,
- Application: détection de réseaux routiers,
- Conclusions Perspectives.

Méthodologie d'évaluation

Evaluation des algorithmes

• comparaison par mesure quantitative,

```
    chaque composante compte,
```

⇒ nécessité de métriques adaptées

mages de test: $T_{ref} = U_{ref} + V_{ref} + W_{ref}$

Méthodologie d'évaluation

Evaluation des algorithmes

- comparaison par mesure quantitative,
- chaque composante compte,

⇒ nécessité de métriques adaptées.

Images de test: $f_{ref} = u_{ref} + v_{ref} + w_{ref}$

Méthodologie d'évaluation

Evaluation des algorithmes

- comparaison par mesure quantitative,
- chaque composante compte,

 \Longrightarrow nécessité de métriques adaptées.

Images de test: $f_{ref} = u_{ref} + v_{ref} + w_{ref}$

Choix des métriques

- composante u: $||u u_{ref}||_{L^2}$,
- composante $v: ||v v_{ref}||_{L^2}$,
- composante $w: \|\gamma_{w} \gamma_{w_{ref}}\|_{L^{2}}$

Evaluation

Références

Résultats

Algorithme	F ^{JG}	F ^{AC2}	F^{JG3}
$\ \tilde{u} - u_{ref}\ _{L^2}$	0.80	0.88	1
$\ \tilde{\textit{v}} - \textit{v}_{\textit{ref}}\ _{\textit{L}^2}$	0.65	1	0.56
$\ \gamma_{W} - \gamma_{W_{ref}}\ _{L^2}$	0.99	1	0.60

Plan

- Introduction,
- Décomposition d'image u + v,
- Extension au cas bruité,
- Evaluation des algorithmes,
- Application: détection de réseaux routiers,
- Conclusions Perspectives.

Propriété de $\|.\|_G$

Lemme

Réhaussement d'objets longilignes

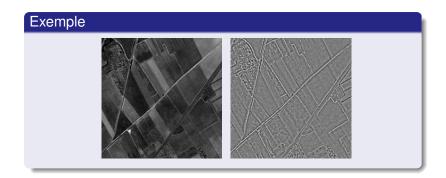
Soit f la fonction indicatrice de l'ensemble E_N défini par

$$E_N = [0,1] \times [0,N]$$

quand N est grand f correspondra à un objet longiligne dans l'image. On a alors

$$||f||_{G} \in \left[\left(2+\frac{2}{N}\right)^{-1}, \frac{1}{2}\right]$$

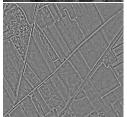
Propriété de $\|.\|_G$



Extraction des routes

Algorithme de détection

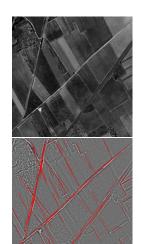
- Extraction des textures,
 - Détecteur d'alignements + règles
 - de lusion
 - ==> liste de segments,
 - Contour actif statistique
 - ⇒ liste de courbes
 - [scale=0.5]snake



Extraction des routes

Algorithme de détection

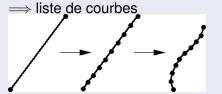
- Extraction des textures,
- Détecteur d'alignements + règles de fusion
 - ⇒ liste de segments,



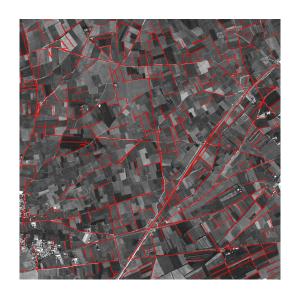
Extraction des routes

Algorithme de détection

- Extraction des textures,
- Détecteur d'alignements + règles de fusion
 - ⇒ liste de segments,
- Contour actif statistique



Résultat



Plan

- Introduction,
- Décomposition d'image u + v,
- Extension au cas bruité,
- Evaluation des algorithmes,
- Application: détection de réseaux routiers,
- Conclusions Perspectives.

Conclusions

• Modèles de décomposition «objets + textures»,

- Modèles de décomposition «objets + textures»,
- Modèles de décomposition «objets + textures + bruit»,

- Modèles de décomposition «objets + textures»,
- Modèles de décomposition «objets + textures + bruit»,
- Inclusion de la géométrie des images (contourlettes),

- Modèles de décomposition «objets + textures»,
- Modèles de décomposition «objets + textures + bruit»,
- Inclusion de la géométrie des images (contourlettes),
- Métriques adaptées pour évaluer les algorithmes,

- Modèles de décomposition «objets + textures»,
- Modèles de décomposition «objets + textures + bruit»,
- Inclusion de la géométrie des images (contourlettes),
- Métriques adaptées pour évaluer les algorithmes,
- Propriété de réhaussement des objets longilignes.

Perspectives

- Extension au cas multi-dimensionnel,
- Bruit multiplicatif: f = (u + v)w.
- Étude des propriétés des fonctions de l'espace de textures
- Etude du choix des paramètres et adaptativité de l'algorithme

Perspectives

- Extension au cas multi-dimensionnel,
- Bruit multiplicatif : f = (u + v)w,

ロト 4月 トイミト 4 ま りくら

Perspectives

- Extension au cas multi-dimensionnel,
- Bruit multiplicatif : f = (u + v)w,
- Etude des propriétés des fonctions de l'espace de textures,
 - Etude du choix des paramètres et adaptativité de l'algorithme

Perspectives

- Extension au cas multi-dimensionnel,
- Bruit multiplicatif : f = (u + v)w,
- Etude des propriétés des fonctions de l'espace de textures,
- Etude du choix des paramètres et adaptativité de l'algorithme.

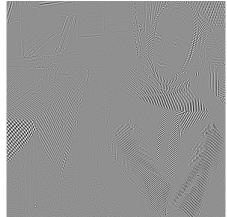
Adaptativité

But

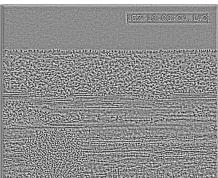
Isoler les zones de textures

- calcul de l'entropie des coefficients d'ondelette,
- estimation "des variations" de la géométrie,
- construction d'un $\lambda(x, y)$ permettant d'avoir le caractère adaptatif de l'algorithme.

Adaptativité : premier test



Analyse des textures



QUESTIONS?

http://jerome.gilles91.free.fr