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ABSTRACT

In this communication, we deal with the question of auto-
matic target detection, recognition and tracking (ATD/R/T)
algorithms performance assessment. We propose a com-
plete methodology of evaluation which approaches objec-
tive image datasets development and adapted metrics def-
inition for the different tasks (detection, recognition and
tracking). We present some performance results which
are currently processed in a French-MoD program called
2ACI (“Acquisition Automatique de Cibles par Imagerie“).

1. INTRODUCTION

Today, image processing is more and more used in
military applications. Ones of the most used are Au-
tomatic Target Detection/Recognition (ATD/R) and tra-
cking algorithms on infrared imagery. An objective of
the french governmental agency DGA is assessment
of such kind of algorithms in order to evaluate their
performances.

An important part of work in a french program called
2ACI (“Acquisition Automatique de Cibles par Imagerie”)
is the definition of a complete performance evalua-
tion methodology. The performance evaluation prin-
ciple is given in figure 1. We start with the definition
of how to build test image datasets. Another impor-
tant part is: which metrics are relevant to measure
performances of ATD/R and tracking algorithms?
The paper is organized as follows. In section 2, we
present the different metrics we choose to assess
the performances of ATD/R and tracking algorithms.
Section 3 is devoted to the construction of image

FIG. 1 – Principle of ATD/R algorithm evaluation.

datasets. In section 4, we present some preliminary
results of the french 2ACI program. We end the pa-
per by giving a conclusion and some perspectives of
this work.

2. ASSESSMENT METRICS

In this section, we adress the choice of relevant met-
rics to quantify the performances of the different kind
of algorithms. As the different tasks has their own
characteristics, we propose adapted metrics for each
one. In all this section, we assume that test datasets
and their ground truth are available.

2.1. Detection

The detection algorithm is said efficient when the tar-
get is detected, well localized and its size is well esti-
mated. Let us define some notations based on figure
2. We assume that the assessed algorithm outputs
the bounding box (BBox) around the detected target.
The reference target is denoted Z∗ and the detected
one by Z. The variables Xref , Yref ,Wref , Href and
Sref are respectively the coordinates of the BBox’s
center, Wref , Href and Sref are the width, height
and surface of the BBox of the reference target. The
same definitions are used for the detected target (D
is the corresponding subscript).



FIG. 2 – Detection’s notations.

In practice, we have two ways to declare a detection
as good or not. The first one is to use Jaccard’s cri-
terion [6, 1] (Eq.1).
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The second one, inpired from the ROBIN competi-
tion [4], is to use a combinaison of three criteria: a
localization criterion m1, a scale accuracy criterion
m2 and a segmentation accuracy criterion m3, re-
spectively defined by equations (2),(3),(4).
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Then a detection is said good if m1 ≤ ε1, m2 ≤ ε2
and m3 ≤ ε3 are simultaneously verified, where we
experimentaly choose ε1 = ε3 = 0.15 and ε2 = 0.5.
Finally, we can calculate, over the dataset, the (good)
detection rate (DR), the false alarm rate (FAR) and
then plot the corresponding ROC curve [2].
In [8], the authors propose two other interesting met-
rics which take care about another aspect of seg-
mentation accuracy: the multiple trackers (MT) and
multiple objects (MO). The first one represents the
fact that multiple BBoxes are found on a unique tar-
get, the second one, the case of a unique BBox on
multiple targets (see figure 3).
All these metrics permit to accurately evaluate the
behaviour and performances of any ATD algorithms.

2.2. Recognition

We select two levels of classification: recognition and
identification. The first one uses general classes (car,

FIG. 3 – Multiple tracker (MT) and multiple objects (MO)
definition.

truck, tank, . . .). The classes used by the second
one correspond to detailed model of target (AMX30,
Leclerc, T72, . . .). In order to evaluate the perfor-
mances of this kind of algorithms, we need to check
if the class proposed by the ATR algorithm is or not
the same as the reference class. The best way to
summarize these results is to use confusion matri-
ces [3].

2.3. Tracking

In this section, we examine the case of tracking per-
formed by movement detection algorithms. Two points
are needed to be evaluated: the detection of target
and the tracking itself. The detection case can be
treated with the same metrics described in section
2.1. In this section, we specifically add some metrics
to deal with the performances of tracking. In [8], the
authors adress the behavior of a tracker, in the sense
that the algorithm could assign successive trackers
to a same target or a tracker initially assigned to one
target could “jump” to another target. The first one
is called the False Identified Tracker (FIT) and the
second one the False Identified Object (FIO). For ex-
ample, in figure 4, the first target is associated with
Tracker1 but at a certain time the algorithm missed
this tracker and create a new tracker: Tracker2, this
is FIT. Tracker3 is assigned to the second target but
jumps to the third target at a certain time, this corre-
sponds to FIO.

FIG. 4 – False Identified Trackers and Objects.



All the metrics described in the previous sections
permit to accurately evaluate the behavior and per-
formances of any ATD/R and tracking algorithms.

3. INFRARED IMAGE DATASET GENERATION

The acquisition of IR databases presents a relatively
high cost and takes a lot of time. A solution holds
in the use of scenes simulators, but those remain ex-
pensive in computing time and it is especially difficult
to select the various parameters in order to sweep
a maximum of operational scenarios in an exhaus-
tive way. In previous papers [7, 5], we presented an
hybrid simulation method which permit to generate
huge databases easily. We briefly recall this method
in the next subsections.

3.1. Hybrid IR image generation

In [7], the authors propose to generate hybrid data-
bases by superimposition of targets and occultant
(like trees, rocks,. . .) in front of a background under
constraint of image quality metrics. Entry parame-
ters of these constraints are most effective to de-
scribe realistic operational scenarios. The used con-
straints are: local contrast RSS, “detectability” quan-
tity QD, signal to clutter ratio SCR, occultation ratio
Rx and internal target contrast K. These quantities
are defined by
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1
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√
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C (5)

QD = RSS.SC (6)
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=
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where C is the target, F1 the local background over
C and F2 the remaining background (we denote the
global background F = F1 ∪ F2), see Figure 5. The
quantities Sx, µx, σx are the surface, mean and stan-
dard deviation of x area where x is C, F1 or F2, re-
spectively. The coefficient νk is the coefficient which
permits to do the conversion between pixel gray lev-
els and temperature in Kelvin. The choice of these
parameters fixes some gains and offsets to apply on
the pixels of both the target and background in or-
der to obtain the resulting image. Finally, the sen-
sor effect (MTF, sampling and noise) is applied. The

FIG. 5 – Definition of different areas for target superim-
position over a chosen background.

FIG. 6 – Hybrid scene generation principle.

hybrid scene generation process is summarised in
Figure 6. We start, A©, by positioning the occultant,
then, B©, the positioning of the target inside the back-
ground. We apply the calculated gains and offsets to
histograms of each region, C©. We finish by apply-
ing the sensor effect, D©. More details and the ex-
pressions of the different gains and offsets to apply
can be found in [7]. This scene generation principle
was used for ATR algorithms evaluation in the CAL-
ADIOM project.

However, one aspect is not taken into account in this
algorithm: the intrinsic thermal variability of targets.
In the next subsection, we propose an approach to
deal with this aspect in the hybrid scene generation.



FIG. 7 – Map of homogeneous thermal behavior of a given
vehicle.

3.2. Intrinsic thermal variability

Here we recall an original method proposed in [5]
allowing to take into account of this variability during
the scene generation.
This variability, which is function of the vehicle oper-
ation, is equivalent to a modification of the vehicle’s
signature. It is too complex, from a practical point of
view, to use an accurate thermal physical models for
different targets. We propose to create intermediate
signatures by interpolation from ambient (TA) and
operationnal (TF ) temperatures, taken from real ra-
diometric images from ETAS (a french center which
does signatures measures). For this purpose, we
lay out 3D models of vehicles on which we plate in-
frared textures. These textures are available for the
TA and TF temperatures. We propose to segment
the surface of the vehicle into homogeneous thermal
behavior areas which are dependent on the differ-
ent operational vehicle’s areas. The relevant chosen
areas are: the engine, the main body, the muffler,
windows, tires/caterpillar (see Figure 7).
An intermediate thermal state of an area R (TIR),
relevant to the wanted variability, is generated by mix-
ing the states TA and TF , according to equation
(10).

TIR = (1− λR)TAR + λRTFR, (10)

where λR ∈ [0; 1] represent the variability rate for
area R. We can define three different behavior:

1. ambient temperature: λR ∈ [0; 0.1],

2. intermediate temperature: λR ∈]0.1; 0.9[,

3. in operation temperature: λR ∈ [0.9; 1].

The final choice of λ is done by random drawings ac-
cording to gaussian laws (or half-gaussian at ends,
see Figure 8). The standard deviation of each gaus-
sian is choosen in order to have 99% of its surface

FIG. 8 – Probability laws of λ for the different opera-
tionnal mode.

inside the intervals considered above. This is equiv-
alent to 3σTA = 3σTF = 0.1 and 3σTI = 0.4, this give
us σTA = σTF = 0.33 and σTI = 0.133 respectively.
Then the different laws are given by equations (11),
(12) and (13) (for all λ taken in the previous inter-
vals).
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By selecting different thermal configurations (for ex-
ample a vehicle in standby where its engine and muf-
fler are hot, its body, windows and tires at ambient
temperature), we can generate the intermediate tex-
ture to plate on the 3D model.
Let us present some results we get by hybrid simu-
lation. First, Figure 9 shows different thermal con-
figurations of a same vehicle presented in the same
point of view. We can see that it is possible to cre-
ate realistic IR signatures which correspond to pre-
defined operational states (vehicle completely mo-
tionless, vehicle in motion, . . .). In conclusion, the
method enables us the generation of all needed views
of a vehicle.
Second, these new signatures are added to a new
target database which will be used by the hybrid sce-
ne generator. This allows us to generate scenes
which take into account the intrinsic thermal variabil-
ity of targets by superimposing the wanted target ta-
ken in this new database. Figure 10 shows an exam-
ple of a same scene, generated with the same image
quality constraints, containing the same vehicle with
different thermal configurations.



FIG. 9 – Example of different thermal configurations gen-
erated by the proposed methode.

3.3. Sequences generation

In order to assess the case of moving targets, we
also need some sequence datasets. As in the pre-
vious described methodology, we are also interested
in exhaustive sequences. Then, we want to keep the
same methodology to generate the sequence data-
sets.
As our method doesn’t use 3D terrain modelling we
cannot deal with every kind of trajectories (for ex-
ample, we cannot take care about ground elevation).
But, as we have 3D models of targets, we can eas-
ily get the wanted direction of view of it. This will be
useful because we can choose a trajectory, which is
assumed to be on a plane, and from the position of
the sensor we can deduce the corresponding orien-
tation. At this time, we choose only two trajectories
(see figure 11). The first one, which we called “S-
trajectory”, alterns the orientation of the target (front,
next side, next front views) in order to evaluate if
the orientation has an impact on the performances
of the algorithm. The second trajectory is a “Direct-
trajectory”, the orientation of the target doesn’t chan-
ge during the movement.

Then, for each position along the trajectory, we do
the corresponding projection with the good orienta-
tion of the 3D target model. These signatures are
used as inputs in the hybrid simulation. We assume
that the parameters of the hybrid method are choosen
for the whole sequence and does not depend on the
position of the target. This permits us to generate se-
quences easily and create a huge dataset for ATD/R
evaluation. In figure 12, we show respectively frames
400, 500 and 600 of an S-trajectory sequence of a
target at 950m. We can see that we have differ-
ent appearances of the target during the sequence
which is important to assess the recognition behav-
ior of algorithms.

FIG. 10 – Example of a same scene with different thermal
configurations of a vehicle.

4. ATD/R ALGORITHM ASSESSMENTS

In the program called 2ACI, different research teams
work on ATD/R and Tracking algorithms. Today, some
preliminary evaluations are conducted with some al-
gorithms. In order to have some exhaustive results,
we generate a huge database which contains many
scenarios corresponding to different levels of difficul-
ties. This database was created by the method pre-
sented in section 3 and contains more than 37000
images. In figure 13, we present some examples of
results we get by the previous described methodol-



FIG. 11 – The two chosen trajectories for sequence gener-
ation. Top: S trajectory, bottom: direct trajectory.

ogy for the case of detection by plotting the corre-
sponding ROC curves. The plot on top shows the
ROC curve obtained for different choice of parame-
ters in the algorithm. This permits to see the behav-
ior of the algorithm regarding its parameters. The
next two ones show the performance of the algorithm
on two different scenarios of the database. The sec-
ond curve corresponds to a more complicated sce-
nario than the curve on the bottom of the figure.

5. CONCLUSION

In this communication, we propose a complete me-
thodology to assess Automatique Target Detection/
Recognition and Tracking algorithms on infrared im-
ages. We propose an original method to build huge
datasets by “hybrid” simulation which permits a full
control of image quality. This allows us to evaluate
the algorithms in an exhaustive way. We also de-
fine different metrics which are representatives of the
measured performances.

In the future, in DGA, we plan to use this metho-
dology to assess all ATD/R and Tracking algorithms.
This will permit us to easily compare the algorithms
proposed to DGA.

Finally, some current works are dedicated tp adapt
the presented methodology to the visible imagery.
The ATD/R performances metrics remains unchanged
from the thermal case. Nevertheless, the image qual-
ity figures of merit used for the image database gen-
eration should be reviewed, because of the image
formation process in the physical domain which is
more complicated than in the thermal domain. Ac-
tually, the reflective part of the photonic flux coming

FIG. 12 – Example of a “S-trajectory” sequence for a tar-
get at 950m.

from the target is dominant compared to the emissive
part, which makes the signature appearance more
variable (BRDF effects, shadow phenomenon). In
addition, the visible imagers are often sensitive to
colors, which increase again the diversity of the tar-
get/background combinations to consider. In spite of
the added complication, the interest of this method
remains valid: simplifying the apparent complexity of
the image formation process in order to explore more
easily and more exhaustively the combination set of



FIG. 13 – Example of ROC curves obtained by the detec-
tion assessment methodology.

the possible cases.
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