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Abstract. In this paper, we present a new combination technique to
fuse scores deriving from face and iris biometric matchers. Based on a
precise statistical analysis of bootstrapped match scores deriving from
similarity matrices, we show the utility of wavelet denoising on normal-
ized scores. Then, we use an adaptive fusion rule based on the maxi-
mization of a cost function combining user-specific weights, a separation
distance and statistical moments. Experiments are conducted on FERET
and CASIA databases and results show that our proposed method out-
performs by 70% some of the best current combination approaches in
terms of Equal Error Rates (EER), and reaches a Genuine Accept Rate
(GAR) equals to 100% at a False Accept Rate (FAR) of 7 × 10−4%.

1 Introduction

In multi-biometric systems, the key issue is the fusion method. Among the dif-
ferent levels of fusion [1], score level fusion has been very studied; most probably
because fusing scores at this stage allows a parallel development of each unibio-
metric system and offers a good tradeoff between richness of information and ease
of implementation. At that level, Many fusion techniques have been proposed
so far: these methods include classification approaches such as neural networks,
k-nearest neighbor, classification tree, SVM and simple combination approaches
such as min rule, max rule and sum rule [2]. The purpose of this paper is to con-
tribute a new adaptive combination approach to score level fusion, introducing
a new method called Wavelet Score Denoising (WSD). Haar wavelets are used
to denoise data represented by vectors of match scores, and standardized statis-
tical moments (skewness and kurtosis) are maximized to increase the separation
between genuine and impostor scores, thus improving the global performance
of the multimodal biometric system. The remainder of this paper is organized
as follows: first, in section 2, we will discuss about the use of chimeric users in
multibiometrics. In section 3, the construction of face and iris similarity matrices
will be introduced. Statistical analyses of score distributions will be discussed in
section 4. Wavelet score denoising theory will be explained in section 5 and the
proposed adaptive fusion rule will be detailed in section 6. Then, some exper-
iments and results will be described in sections 7. Finally, a conclusion will be
drawn and future work will be presented.
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2 On the Use of Chimeric Users in Multibiometrics

The first problem we are facing when working on multi-biometrics is the lack of
real-user databases. As far our knowledge is concerned, except the very recent
MBGC Database [3], there are no free available multimodal real-user database
combining face and iris modalities. However, there exist two well established
datasets for face and iris images (cf. section 3), thus implying the combination
of biometric modalities from different databases, which result in the creation
of chimeric users (i.e. virtual subjects created with biometric traits of different
users) [4], [5]. Such an arbitrary assignment is a commonly used practice in
the multimodal literature, and was questioned during the 2003 Workshop on
Multimodal User Authentication (MMUA) [6].

At least two arguments (first one is technical, the second one is ethical) may
justify the use of chimeric users; modality independence assumption: two or more
biometric traits of a single person are often assumed independent of each other (a
demonstration using face and speech classifiers can be found in [7]). Moreover,
it seems practically impossible to find a face image based on an iris texture,
thus there is probably very little correlation between face and iris modalities
(e.g. identical twins have four different irises). Privacy issue: participants in
the multimodal biometric experiments are often not ready to let institutes keep
record of too much of their personal information at the same place.

Besides, it has been shown [8] that a fusion operator derived from a chimeric-
user database does not improve nor degrade the generalization performance (on
real users) with respect to training it on real users. The advantage, however, is
that much more training data can be artificially generated thus in this way it
can overcome the lack of training data. More recently, experiments and results
deriving from [9] show that, in most cases, the usage of virtual persons leads to
lower accuracy than the usage of real users in terms of EER, and the creation of
virtual multimodal databases by usage of well known single and/or multimodal
data for biometric evaluations is encouraged.

3 Face and Iris Similarity Matrices

A common way to work at the score level is the use of similarity matrices which
contain scores deriving from biometric matchers [10].

The Face Similarity Matrix (FSM) has been generated from the FERET Face
Database [11], using the FERET Training Set, the FERET FA Gallery Set and
the FERET FB Probe Set. Face preprocessing has been performed according
to the CSU System v5.0 [12]. To generate match-scores, the Log-Gabor PCA
(LGPCA) face recognition algorithm [13] has been implemented and the Maha-
lanobis Cosine (MahCosine) similarity measure [14] has been computed for each
probe-gallery pair. Finally, The FSM is of size of (1193 × 1193).

The Iris Similarity Matrix (ISM) has been generated from the CASIA Iris Im-
age Database v3.0 (CASIA-IrisV3-Interval Set) [15]. Iris signatures are (512×1)
vectors whose coefficients are −1, 0 or 1, deriving from a 3-level wavelet packets
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analysis on unwrapped iris images [16]. We could have generated 338 different
classes, five iris signatures per class: three for the target set (leading to 1014
target signatures) and two for the query set (leading to 676 query signatures).
In order to correct eye rotation effect (from −15o to +15o), 31 circular shifts
(one shift per angle unit) are performed on each query iris signature

−→
Q before

computing a combined cosine similarity measure (1):

Sccos(
−→
Q,

−→
T ) =

1
2

∏

i={2,10}

( −→
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where
−→
QPi and

−→
T Pi denote the query and target iris signatures of the ith wavelet

packet Pi, respectively, and ‖.‖ is the Euclidean (L2-) norm. Eye rotation effect is
corrected by keeping the highest similarity measure among all the circular shifts
as the match score. This leads to an iris similarity matrix of size of (676×1014).
We randomly kept one row out of two (random query subject) and one column
out of three (random target match) to obtain a final ISM of size of (338 × 338).

4 Statistical Analyses of Score Distributions

Prior to wavelet denoising, the objective of this preliminary step is to consistently
model impostor score distributions for both modalities. We wish to demonstrate
that, under a specific normalization condition, impostor scores can be assim-
ilated to Gaussian white noise. Assume we have a (n × n) similarity matrix,
there are n × (n − 1) impostor scores and n genuine scores. Since estimates of
the score distributions may be erroneous if n is too small, we used the standard
bootstrap resampling technique [17] in order to have better statistical estima-
tions. This bootstrap method allows the construction of a number of resamples
of the observed dataset (and of equal size to the observed dataset), each of which
is obtained by random sampling with replacement from the original dataset. A
common problem is the number of bootstrap repetitions, denoted as B, to be
employed. To determine a suitable value of B, we have followed the three-step
method described in [18]. We specify a bound on the relevant percentage devi-
ation, denoted pdb, and we require that the actual percentage deviation be less
than this bound with a specified probability, 1 − τ , close to one. This three-step
method takes pdb and τ as given and specifies a data-dependent method of de-
termining a value of B, denoted B*, such that the desired level of accuracy is
obtained. For instance, when (pdb, τ) = (10, 0.05), the three-step method yields a
value of B* such that the relevant percentage deviation is less than 10% with ap-
proximate probability 95%. For each original similarity matrix (FSM and ISM),
a training matrix whose size is 40% of the size of the original similarity matrix
is randomly extracted. Then, impostor scores are bootstrapped with the specific
parameters (pdb, τ) = (2, 0.01). Impostor score distribution is computed and fit-

ted with a Gaussian curve (y(x) = 1
σ

√
2π

e−
(x−μ)2

2σ2 ), using a linear least-squares
fitting procedure. Finally, to quantify the quality of the fit, the linear Pearson’s
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(1.a) (1.b)

Fig. 1. Distributions of bootstrapped face impostor scores (1.a) and iris impostor scores
(1.b) deriving from random training similarity matrices. The solid curve fitting in the
histograms is a Gaussian distribution.

Table 1. Statistical Analyses for Face and Iris Scores

Face Iris
Original Size FSM: (1193 × 1193) ISM: (338 × 338)
Random Training Matrix Size (477 × 477) (135 × 135)
Bootstrap Repetitions (B* ) 121 751
Impostor Bootstrapped Scores 27, 473, 292 13, 585, 590
Gaussian Fit Parameters (μ, σ) (−0.005, 0.054) (0.685, 0.018)
Linear Pearson’s Correlation Coefficient (R) 0.998 0.996
Estimates of location and scale parameters
after Z-Score normalization (μ, σ) (−0.012, 0.976) (0.038, 0.920)

correlation coefficient [19], denoted as R (R ∈ [0, 1], R = 1 corresponds to a
perfect fit) is computed. The figure 1 depicts the score distributions for face and
iris modalities and Tab. 1 summarizes the results of the different steps for face
and iris modalities.

Impostor score distributions (several million scores) from Fig. 1 are very close
to Gaussian distributions, which is confirmed by the values of R in Tab. 1 (even
if we can notice that Fig. 1.a depicts a slightly right-skewed distribution). A
Z-Score normalization (which transform scores so as to have a zero mean and a
standard deviation of one) can thus be performed since it is optimal for Gaussian
data [20]. Moreover, according to [21], a random process εt can be considered
as Gaussian white noise if ∀t �= τ, E[εtετ ] = 0 (i.e. Autocorrelation is zero ev-
erywhere except at the origin) and εt ∼ N (0, 1) (normal distribution). Whereas
the former condition is validated by observing Fig. 2, the latter is also validated
thanks to the Z-Score normalization. In practice, the score normalization step
must be performed on the whole similarity matrix (taking into account genuine
scores) and not only on impostor scores. However, this leads to minor changes
in estimates of location and scale parameters for both distributions (cf. last row
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(2.a) (2.b)

Fig. 2. Autocorrelations of face (2.a) and iris (2.b) impostor scores. 106 random samples
have been extracted from previous distributions where the Z-Score normalization has
been performed. In insets, ∀t �= τ, E[εtετ ] ≈ 0.3% of the maximum amplitude.

of Tab. 5). Finally, to a first approximation, we have demonstrated that Z-Score
normalized impostor scores for both modalities can be assimilated to Gaussian
white noise, which is a necessary condition for wavelet denoising.

5 Wavelet Score Denoising (WSD)

5.1 Wavelet Denoising Theory

Donoho and Johnstone [22] proposed a method for reconstructing an unknown
function f on [0, 1] from noisy data: di = f(ti)+σzi, i = 0, ..., n−1, ti = i/n, zi

iid∼
N(0, 1), where N(0, 1) is a Gaussian white noise, σ the noise level.

In our case, a row vector of scores f can be seen as a realization of a random
process involving the calculation of similarity scores between biometric signa-
tures, where the noisy data are represented by impostor scores.

The reconstruction f̂∗
n is defined in the wavelet domain by translating all the

empirical wavelet coefficients of d towards 0 by an amount of T = σ
√

2log(n),
called universal threshold of Donoho, where σ and n are the noise level and the
noise samples length, respectively. Practically, we need to efficiently estimate
the noise level σ. A common method is the use of the median absolute deviation
(MAD) [23], but when the score distribution is not perfectly Gaussian, median
and MAD are poor estimates of the location and scale parameters [20]. Thus,
better estimates may be obtained using the usual arithmetic standard devia-
tion. Finally, wavelet denoising can be performed using “soft-thresholding” of
“hard-thresholding” methods [24].

5.2 Wavelet Score Denoising Framework

The idea behind using wavelet denoising theory on match scores is to improve
the global GAR and EER of the multimodal biometric system by keeping
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genuine scores as high as possible and decrease impostor scores as much as
possible. Since we have demonstrated that impostor scores can be assimilated
to Gaussian white noise, we are now able to use wavelet denoising theory on
the vectors of scores. Some interesting conclusions are drawn in [25]: we can
modify the universal threshold of Donoho into this one: T = κσ

√
log(n), where

κ is a tuning coefficient and universal threshold performed with the “hard-
thresholding” method leads to better denoising results. Besides, the univer-
sal threshold can be improved for various purposes and lower thresholds are
better if one wants to measure performance by mean-squared error [26]. Our
framework is as follows: a 1D-multilevel wavelet decomposition (2 levels, “haar”
wavelet) is performed on row vectors of scores and, at each scale, the noise
level of scores is estimated using the usual arithmetic standard deviation and
the lower modified universal threshold T = κσ

√
log(n) is computed, tuning

κ to 0.92. Finally, the hard-thresholding method is applied and wavelet co-
efficients are then transformed back in the “score domain”. We can appreci-
ate the consequence of the wavelet hard-thresholding in Fig. (3) which clearly
show that the amplitude of the user’s genuine score remains high whereas the
amplitudes of the impostor scores decrease. This last result may be seen as a
efficient preprocessing for row vectors of scores and contribute to improve the
global performance of the multimodal biometric system, even before applying the
fusion rule.

(3.a) (3.b)

(3.c) (3.d)

Fig. 3. Illustration of the WSD method performed on vectors of face and iris scores for
a given user. Original face (3.a) and iris (3.c) scores, denoised face (3.b) and iris (3.d)
scores.
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6 User-Specific Weighted Sum Rule Using Statistical
Tradeoff

In order to improve simple combination rules and the user-specific weighted sum
rule [27], we present here a new adaptive user-specific fusion rule using statistical
tradeoff. In a biometric system, the smaller the overlap between impostor and
genuine scores (Fig. 4.a), the better the recognition rate. Thus, if we want to im-
prove the global recognition rate of a biometric system, we can increase, for each
user, the separation between impostor and genuine score distributions. There-
fore, for each user, we maximize a cost function combining three parameters: a
separation distance, skewness and kurtosis [28] of impostor score distributions.

6.1 The Separation Distance (Δ)

This first parameter is simply the distance between the impostor score distribu-
tion and the user’s genuine score (Fig. 4.b). Maximizing this separation distance
contributes to minimize the overlap area previously introduced.

6.2 Skewness: The Third Standardized Moment (γ1)

Skewness is a measure of the asymmetry of the probability distribution of a real-
valued random variable X , having a mean μ and a standard deviation σ (2).

γ1 = Skew(X) =
E[(X − μ)3]

σ3 , (2)

If the left tail (tail at small end of the distribution) is more pronounced that
the right tail (tail at the large end of the distribution), the function is said to
have negative skewness. If the reverse is true, it has positive skewness. If the
two are equal, it has zero skewness (Fig. 5.a). According to Fig. 4.a, we want
the skewness of the impostors distribution to be the most positive. This may be
performed by maximizing γ1.

(4.a) (4.b)

Fig. 4. Illustrations of FRR and FAR in a biometric system (4.a) and separation dis-
tance for a given user (4.b)
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(5.a) (5.b)

Fig. 5. Illustrations of skewness (5.a) and kurtosis (5.b)

6.3 Kurtosis: The Fourth Standardized Moment (γ2)

Kurtosis is a measure of the peakedness of the probability distribution of a real-
valued random variable X , having a mean μ and a standard deviation σ (3).

γ2 = Kurt(X) =
E[(X − μ)4]

σ4 , (3)

A high kurtosis distribution has a sharper “peak” and flatter “tails”, while a
low kurtosis distribution has a more rounded peak with wider “shoulders” (Fig.
5.b). According to Fig. 4.a, we want the kurtosis of the impostors distribution
to be the most positive (leptokurtic). This can be done by maximizing γ2.

6.4 Proposed Fusion Rule

Let Sface,i and Siris,i be the ith wavelet denoised row vectors of face and iris
similarity matrices, respectively. Let w1,i and w2,i be the weights of face and iris
modalities, respectively, for the ith user. We vary w1,i and w2,i over the range
[0, 1], with a sampling rate of 1

100 and with the constraint w1,i + w2,i = 1.
For the ith user and for each pair of weights (w1,i, w2,i):

1. We compute the fused score (4):

Sfused,i = w1,i × Sface,i + w2,i × Siris,i , (4)

Since we work with similarity scores, the genuine score is assumed to be
equal to max(Sfused,i), the remaining scores being the impostor scores.

2. Then, we compute the separation distance between the genuine score and
the highest impostor score (5):

Δi = max(Sfused,i) − max(impostor scoresi) , (5)

3. We also estimate γ1 (2) and γ2 (3) of the impostor scores distribution.

Then, we find the index ki ∈ [0, 1], defining the best pair of weights W1,i and
W2,i (6) such as:

ki = argmax (Δi ∗ γ1 ∗ γ2) , (6)

The ith final fused score is expressed as follows (7):

Sfinal fused,i = W1,i × Sface,i + W2,i × Siris,i . (7)
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7 Experiments and Results

We followed the testing framework described in [29], allowing the conduction of
normalization and fusion technique evaluations. Since the FSM is bigger than
the single ISM, three different (338 × 338) submatrices deriving from the FSM
have been extracted to consistently fuse scores. For each FSM submatrix and for
each user (i.e. each row), we applied the WSD method described in subsection
5.2 and performed the fusion rule detailed in section 6. Mean EER (along with
standard errors) of different normalization methods and fusion rules have been
computed for the final fused similarity matrices (Tab. 2) and ROC curves have
been drawn (Fig. 6) to compare the performance of our fusion technique to the
current best combination approches [27] for the sum rule. The figure 6 expresses
the GAR with respect to the FAR, i.e. the true recognition rate for different
security levels (the smaller the FAR, the higher the security level).

OurtechniqueneedstheZ-Scorenormalizationtoworksince it is theonlymethod
for assimilating impostor scores to a normal distribution, which is a necessary

Table 2. Mean EER (%)(Standard errors)

Normalization Fusion Rule
Method Min Max Sum Proposed
MinMax 3.005 (0.0005) 0.284 (0.0006) 0.040 (0.0002) N/A
Z-Score 1.439 (0.0039) 0.225 (0.0016) 0.033 (0.0002) 0.010 (0.0001)
QLQ 3.026 (0.0013) 0.286 (0.0006) 0.040 (0.0002) N/A
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Fig. 6. ROC curves. Our method (upper curve) has the best GAR at high levels of
security, compared to one of the best current combination approaches. The proposed
method is the only one to reach 100% recognition rate at FAR = 7 × 10−4%.
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condition to wavelet denoising theory. The other score normalization methods are
not able to transform scores into a normal distribution. The proposed method has
the smallest standard error and outperformsby 70% the “Z-Score / Sum Rule” and
by 75% the “QLQ / Sum Rule”, which are considered to be one of the best current
combination approaches to score level fusion [27].

8 Conclusion and Future Work

First, statistical analyses have been conducted on bootstrapped scores deriving
from FERET and CASIA similarity matrices. Then, we demonstrated that, for
both modalities, Z-Score normalized impostor scores can be assimilated to Gaus-
sian white noise and, thus, can be denoised using wavelets. We proposed a new
adaptive combination technique that maximizes the separation between impos-
tors and genuines, using statistical moments. This technique is user-specific and
takes into account the shapes of score distributions to improve the global recog-
nition rate of the multi-biometric system. The proposed method appears as a
flourishing candidate over actual combination approaches, as underlined by the
promising results. Directions for future work include studying the performance
gain due to each variable Δ, γ1, γ2, and testing our method on the MBGC real-
user database for comparisons purposes with virtual users to see the impact on
performances in terms of GAR and EER.
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