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ABSTRACT

In this paper, we proposed a new model with nuclear-norm
and L1-norm regularization for image reconstruction in
aerospace remote sensing. The curvelet based L1-norm regu-
larization promotes sparse reconstruction, while the low-rank
based nuclear-norm regularization leads to a principle com-
ponent solution. Split Bregman method is used to solve this
problem. Numerical experiments show the proposed model
achieves better reconstruction results compared with the pre-
vious model with L1-norm regularization.

Index Terms— Compressed remote sensing, low-rank,
L1-norm regularization, alternating direction method

1. INTRODUCTION

Remote sensing involves gathering data by the sensor, com-
pressing, and transmitting the digital data back to a process-
ing center. It has many important applications, e.g., imaging
of the Earth’s surface and ocean floors, assessment of crop
conditions, deep-space exploration. Sensor systems, which
may be airborne or satellite borne, are classified two cate-
gories. The first one is passive sensors, such as aerial photog-
raphy, infrared imaging and passive microwave radiometers,
that make use of natural radiation emitted or reflected by the
object being observed. The second category is that of active
sensors such as radars, altimeters and scatterometers. Based
on the conventional imaging principle, millions of pixels cap-
tured by sensors have to be stored momentarily when we take
pictures using a megapixel camera. How to increase storage
and transmission efficiency without degrading picture quality
is a challenging problem.

Recently, the idea of compressed sensing (CS) [1, 2]
is applied in optical and radar remote sensing (renamed as
compressed remote sensing (CRS) [14]). CS states that a
compressible unknown signal can be recovered/reconstructed
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from incomplete sets of linear measurements by a specif-
ically designed model. The CS imaging [3, 4, 5] can be
implemented by single or multiple optical sensors, which not
only saves the cost of additional sensors but also reduces the
size and weight of onboard imaging instruments. CRS can
save power consumption by avoiding the immediate com-
pression step. The encoding captures the compressed form of
a scene directly, which saves the computational cost of trans-
mitting the data back to Earth from satellites within a limited
bandwidth. Another potential advantage of CS imaging is
that it can work much more easily in low light or outside
the visible light spectrum due to the use of only one photon
detector, hence it can be used for night vision and infrared
imaging. It can lead to new instruments with simplified hard-
ware, less storage space, less power consumption, and smaller
size compared with the currently used charge-coupled device
cameras. For imaging radars such as synthetic aperture radar
(SAR) and inverse SAR (ISAR), CRS can again help to re-
duce data storage space as well as simplify the hardware (see
e.g., [8, 9, 10, 11, 12]). CS can also lead to some specific
applications such as moving target parameter estimation [13].
Most of CS applications in remote sensing can be divided into
two categories [14]: 1) Parameter estimation and resolution
improvement when the estimated parameter or the observed
scene is sparse; 2) data compression or simpler hardware
design.

Usually in CS model people use an L1-norm term as reg-
ularizer. Nonconvex Lp-norm (0 ≤ p < 1) has also been con-
sidered, which leads to sparser reconstruction results in most
cases. In our previous RCS work [5, 6], we used L1-norm of
the curvelet coefficients of the objects as sparsity-promoting
regularization.

Recently, low-rank promoting nuclear-norm regulariza-
tion was successfully applied to matrix completion [17]. The
regularization works very well when the object has a priori
low rank. Thereafter, the low-rank idea has been applied in
many fields such as video denoising [20], seismic data recon-
struction [21], etc.

Combinations of the nuclear-norm and the L1-norm terms



have been presented. In [18], the authors decomposed a given
matrix into a low-rank component and a sparse component
(named as robust principal component analysis: RPCA) by
the so-called Principal Component Pursuit. The application of
RPCA in the area of video surveillance has achieved promis-
ing results. Furthermore, the generalized rank, e.g., the ma-
trix rank of tight frame transform of a multi-energy image,
was considered for computed tomography (CT) [19]. It offers
a way to characterize the multi-level and multi-filtered image
coherence across the energy spectrum.

In this paper, we proposed a new decoding method for
single-pixel CRS by combining the nuclear-norm and curvelet
based L1-norm regularization. The minimization of nuclear
norm aims at reconstructing the low-rank principle com-
ponents, and the minimization of L1-norm promotes the
reconstruction of sparse components. However, unlike RPCA
which decomposes images into a low-rank part and a sparse
part, our model applies the two regularization on the original
image. Split Bregman algorithm is applied to solve the joint
regularized minimization problem.

2. MATHEMATICAL MODEL

CS can be described mathematically as a fundamental prob-
lem of recovering a sparse signal X of size N × 1 from a
small set of measurements Y . Let A be a CS measurement
matrix of size K × N . Here, K ≪ N , i.e., the rows of the
measurement matrix are much fewer than the columns of the
matrix. In practice, A denotes a random binary masked lens
in CRS. The encoding can be described as

Y = AX + ε, (1)

where ε denotes possible measurement errors or noise. Each
element of Y is a measurement acquired by a single sensor,
i.e., the so-called single-pixel imaging [3]. The length of Y ,
K, means that the camera takes K-time measurements along
the time sequence. Eq. (1) stands for the mathematical model
of single-pixel multiple-time (SPMT) imaging. In this case, A
is a random binary matrix, which can be generated in practice
by e.g., digital micro-mirror device (DMD) [3].

A popular model for X recovery is the following:

min
X

λ|φX|1 +
1

2
||AX − Y ||2. (2)

The first term in the above equation is a regularization term
that represents a priori sparse information of the original
scenes in certain space. The second term is a fidelity term
that represents closeness of the solution to the observed
scenes. φ is a proper transform. λ is a regularization parame-
ter that can be tuned. In this paper, we use curvelet transform
[15, 16] as φ. For images with line-like edges, its curvelet
coefficients tend to be sparse. In this paper, we combine the
low-rank regularization with our previous curvelet based L1

regularization and propose the following joint model:

min
X

λ1|φX|1 + λ2||X||∗ +
1

2
||AX − Y ||2. (3)

Here ||X||∗ denotes the nuclear norm of X , which is the L1-
norm of the singular values of X . It should be noted that the
above model is a relaxation of the original sparse and low-
rank regularized model

min
X

λ1|φX|0 + λ2rank(X) +
1

2
||AX − Y ||2, (4)

where the rank(X) stands for L0-norm of singular values
of X . The (4) is an NP-hard problem that results from non-
convexity and discontinuously of the objective function

3. MATHEMATICAL ALGORITHM

We apply split Bregman method, which is equivalent to
ADMM (alternating direction method of multiplier), to solve
the joint model (3). By introducing auxiliary splitting vari-
ables D1 and D2, (3) can be rewritten as

min
X

λ1|D1|1 + λ2||D2||∗ +
1

2
||AX − Y ||2,

s.t. D1 = φX, D2 = X. (5)

By introducing Bregman iterative variables B1 and B2, we
have the unconstrained minimization problem

min
X

λ1|D1|1 + λ2||D2||∗ +
1

2
||AX − Y ||2

+
µ1

2
||D1 − φX −B1||2 +

µ2

2
||D2 −X −B2||2. (6)

This problem can be solved by alternating direction method

Dk+1
1 = argmind1λ1|d1|1

+
µ1

2
||d1 − φXk −Bk

1 ||2, (7)

Dk+1
2 = argmind2λ2||d2||∗

+
µ2

2
||d2 −Xk −Bk

2 ||2, (8)

Xk+1 = argminX
1

2
||AX − Y ||2

+
µ1

2
||Dk+1

1 − φX −Bk
1 ||2

+
µ2

2
||Dk+1

2 −X −Bk
2 ||2, (9)

Bk+1
1 = Bk

1 + φXk+1 −Dk+1
1 , (10)

Bk+1
2 = Bk

2 +Xk+1 −Dk+1
2 . (11)

The minimization problem in (7) can be solved by classi-
cal iterative thresholding, and the minimization in (8) can be
solved by existing low-rank algorithms, e.g. iterative singular



value thresholding (SVT) [22], fixed point and Bregman it-
erations [23], nonlinear successive over-relaxation algorithm
[24]. The minimization in (9) can be explicitly solved by

X = β−1[ATY + µ1φ
T (Dk+1

1 −Bk
1 ) + µ2(D

k+1
2 −Bk

2 )],
(12)

where
β = ATA+ (µ1φ

Tφ+ µ2)I. (13)

We have φTφ = I for curvelet transform. If one takes or-
thogonal CS measurement matrix, i.e., ATA = I , then β =
(1 + µ1 + µ2)I .

4. NUMERICAL RESULTS

We apply 2D jittered sampling as the CS measurement matrix.
Unlike the Gaussian random binary matrix, the jittered sam-
pling controls that the maximal gap between ones should be
smaller than a given value. In our test, we set 50% elements
as ones in the jittered binary matrix. We use parameters λ1 =
10, λ2 = 20, µ1 = 0.02, µ2 = 0.02, and 100 iterations. The
SNR is computed by 10 log10(∥X∥2F /∥X − X∗∥2F ), where
X∗ is the original scene and X is the reconstructed one. Fig-
ure 1 shows a case of the single-pixel imaging of the Moon’s
surface. Figure 1 (a) is the original unknown scene. In this
example, we consider white noise ε = ρMY RN where the ρ
indicates the noise ratio, the MY denotes the mean value of Y
and RN denotes a N×1 vector of Gaussian random numbers.
Figure 1 (b) shows a part of the CS matrix, where the white
points denote ones. Figure 1 (c) and (d) are the reconstructed
results by using curvelet L1 regularized method [5] for differ-
ent noise ratio ρ = 0.001 and ρ = 0.002, respectively. Figure
2 (e) and (f) show the reconstructed results by the proposed
new method for the different noise ratio. Figure 2 (g) and
(h) display the comparisons of their SNR (signal-to-noise ra-
tio) as the number of iterations increases. With the help of the
low-rank regularization, the proposed method obtains slightly
better results than the previous L1 method.

5. CONCLUSION

A joint low-rank and sparse promoting model is designed for
signal reconstruction in the field of compressed remote sens-
ing. Better reconstruction results can be obtained by the pro-
posed model compared with previous curvelet based L1 regu-
larized model. This new model may be used for identification
of moving targets when one reconstructs image sequence. Ex-
tension to radar imaging is our next work.
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