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ABSTRACT

Few people use the probability theory in order to achieve
image segmentation with snake models. In this article1, we
are presenting an active contour algorithm based on a proba-
bility approach inspired by A. Blake work and P. Réfrégier’s
team research in France. Our algorithm, both very fast and
highly accurate as far as contour description is concerned,
is easily adaptable to any specific application.
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larization.

1. INTRODUCTION

In the last fifteen years the active contours have been suc-
cessfully applied in many different ways. Snake can be
modelled according to several mathematical formulation.
Each one of them entails its own drawback but provides its
own advantages at the same time. In 1988, Kass et al. [1]
proposed an energy-based formulation,
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in which C represented the curve, I the image, α and β

the parameters used for the control of the curve properties.
Though it works, Kass’s model is limited in its sensitivity
to initialization. What is more, it has no natural adaptability
to changes in topology. As for the improvements proposed
(see [2],[3]), they add to the complexity of the implementa-
tion.

In 1997 geodesic active contours were proposed as a ge-
ometric alternative to snake (see [4],[5]). They included as
well an energy-based term. Yet they managed to overcome
the deficiencies of the classical snake formulation. Thanks
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to geodesic active region [6] and to levelset implementation,
geodesic active contours stopped being sensitive to initial-
ization and at the same time topology changes became im-
plicit.

Lately the question has been examined from an innova-
tive angle by A. Black et al. [7] who resort to probabilities
and B-Spline curves. And as for him C. Chesnaud [8] pro-
poses a region-based criterion so as to minimize,

J(s, ~C) = Na(~C)H(θ̂a) + Nb(~C)H(θ̂b) + Kl (2)

In which Ni(~C) is the number of pixels inside the curve and
Hi(θ̂i) represents a measure of probability wich depends on
the a priori model chosen to figure the pixels distribution,
see [8] for more details (we shall call this model CASP).

CASP is actually interesting but its main drawback is
that it cannot be used with open curves. That is why we have
endeavoured to develop a new formulation of CASP so as to
adapt it equally to open or closed curves. The following
section gives the formulation of our model, the third one
exposes the implementation of our algorithm and the last
one states our results and compares them with other models.

2. STATISTICAL SNAKE MODEL

Let us assume that:

• I is the image

• C(s) represents the curve wich corresponds to N knots
(Ni)

• B represents the edges in the image

• p(C|B) is the probability density that the snake is on
the edge

• p(B|C) is the probability density that there is an edge
on the current position of the snake
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Fig. 1. Ideal edge image and variance along the normal of
Ni

According to the Bayes’ rule we can write,

p(C|B) =
p(B|C)p(C)

p(B)
(3)

Since p(B) is constant, the final snake position is the
curve C which minimizes the likelihood p(C|B), or
p(B|C)p(C).
If we consider that each knot is independent we can write,

p(B|C) =
∏

i∈[0..N−1]

p(Ni|I) (4)

The choice of the density p(Ni|I) depends on the prob-
lem we want to solve. For example, if we want to detect the
edges in the image, we can calculate the variance inside a
window centered in Ni (see next section).
The density p(C) represents the constraints on the curve
such as [8] where,

p(C) = A exp{−
1

2ϕ2

N−1∑

i=0

d2
i } (5)

in which di is the distance between Ni and the center of
segment Ni−1Ni+1. It limits the irregularity of the curve.
Another example of density will be given in the next section.
The upper model has a very simple formulation and we can
easily adapt it to different problems. A drawback is that the
topology changes are not included in the formulation.

3. IMPLEMENTATION OF THE STATISTICAL
SNAKE

In this section, we will give some practical pieces of infor-
mation to implement our model. As in the case of geodesic
snake and, as in [7], we consider only the movement along
the normal of each knot of the curve. Along this normal,
we fix a research depth (named L), in order to find the new
position of the current knot. On each point of this segment
we calculate a measure of variance inside a window so as to
estimate p(Ni|I). Thus an edge corresponds to a maximum
of the variance (see Fig.1).

If we intend to regularize the snake, we can use a func-
tion which directly acts on the density function p(Ni|I). For
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Fig. 2. Regularization: (a) p(Ni|I), (b) the regularity func-
tion, (c) p(Ni|I) regularized.

example if we want to give top priority to the nearest con-
tour to the current position, we can filter p(Ni|I) with a
“low-pass filter” considering that “low frequencies” corre-
sponds to the positions close to the current knot and “high
frequencies” to the distant positions (see Fig.2).

With open curves, the normal chosen at end points is
orthogonal to the last segment.

So as to improve the convergence of the snake, we pro-
cess three steps:

• Optimizing the curve with a few points and high re-
search depth.

• Resampling the snake to have high resolution contour.

• Re-optimizing the curve with all points but with a lit-
tle research depth.

4. EXPERIMENTAL RESULTS

Here we propose to compare first our model with the clas-
sical snake model and the CASP model of [8] in the case of
closed snakes. Then we will compare our model with the
classical one in the case of open snakes.

4.1. Closed curves

Figure 3 shows the results in the closed curve case. In (a) we
have the initialization, in (b) we can see classical snake re-
sult with the parameters: α = 0.1, β = 0.1, λ = 0.5 where
λ is the regularisation parameter in the evolution equation
(see [9]). In (c) we can see the output of the CASP algorithm
when we choose max_deviation= 5, Nb_iteration= 3000,
regularization= 0.2 and a gaussian density for each region.
The last, (d), shows the result with our model with:

• First pass: research depth = 25, window analysis size
of 7 pixels, regularisation = 0

• Resampling with a maximum of 4 pixels between two
consecutive knots



• Second pass: research depth = 5, same window size
and regularisation = 1

Our model gives better resolution than the classical snakes.
It is as efficient as CASP but our parameters can be found
more easily than any.

Tab.4.1 gives the different computing times for the two
algorithms. The tests were made on a bi-P3-866 with 1Gb
of RAM. We do not give the computing time for the CASP
model because we haven’t implemented the fastest algo-
rithm described in [8].

Algorithm Time
Classical snake 566µs

Our model 9.95µs

Table 1. Time convergence for closed curves

Fig.4 gives another example of segmentation in infrared
image for military application. We use the model with only
14 knots for the first step, resampling with a maximum of
4 pixels between two consecutive knots in the second step
and a new optimizing pass in the third step. As we can see,
the tank is extracted with high accuracy.

4.2. Open curves

Fig.5 highlights the results obtained on open curves. Initial-
ization is shown in (a). (b) gives the results of the classical
snake using α = 0.1, β = 0.5, λ = 0.99. (c) depicts our
model results using the following steps:

• First pass: research depth = 20, window analysis size
of 7 pixels, regularisation = 0

• Resampling with a maximum of 4 pixels between two
consecutives knots

• Second pass: research depth = 5, same window size
and regularisation = 0

The parameters that control the classical snake were found
with difficulty. Tab.4.2 gives the different computing times
showing that our algorithm if 200 times faster than the clas-
sical snake model.

Algorithm Time
Classical snake 565µs

Our model 2.2µs

Table 2. Time convergence for open curve

(a) (b)
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Fig. 3. Results in the closed curve case obtain. Initialization
(a), classical snake (b), CASP model (c) and our statistical
model (d)

Fig. 4. Exemple of tank segmentation
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Fig. 5. Results in the open curve case obtain. Initialization
(a), classical snake (b), our statistical model (c)

5. CONCLUSION

We have proposed a very fast snake algorithm based on a
probability approach. This model accuracy is quite high
when using two steps that speed the convergence using few
knots and then resample the curve. Futhermore this model
uses only three parameters, one of them (the window size)
being set to a fixed value for most applications.

We are now working on its adaptability to fit multiple ob-
jects detection (topology changes) and on the regularization
process to increase its stability.
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