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Abstract

This paper describes the many image decomposition models that allow to separate struc-
tures and textures or structures, textures, and noise. These models combined a total
variation approach with di�erent adapted functional spaces such as Besov or Contourlet
spaces or a special oscillating function space based on the work of Yves Meyer. We pro-
pose a method to evaluate the performance of such algorithms to enhance understanding
of the behavior of these models.
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1. Introduction

In the last few years, di�erent algorithms have been proposed to decompose an image
into its structures and textures components and these ints structures, textures, and
noise components. The initial idea was proposed by Meyer (2001). He proposed starting
from the Rudin-Osher-Fatemi algorithm, (Rudin et al. (1992)), which was designed to
perform image denoising. Meyer showed that this model rejects the textures and then
proposed to use a new function space, G, by replacing the L2-norm by the G-norm. He
proved that this space corresponds to a space of oscillating functions that are useful to
model textures. Two years later, two numerical schemes were proposed to solve Meyer's
model, particularly the algorithm based on Chambolle's nonlinear projector. It is easy
to implement, and convergence conditions are given by a theorem.

These models work well provided no noise is present in the image. Otherwise, it is
necessary to extend the model to a three-part model. Di�erent approachs were proposed
based on a local adaptable algorithm or wavelet soft thresholding Aujol and Chambolle
(2005); Gilles (2007b).

This paper describes the philosophy developped by Meyer and gives a description of
the di�erent structures + textures models in section 3 and structures + textures + noise
models in section 4. A new three-part model, based on contourlet soft thresholding, is
introduce. This mode improves the results of the previous algorithms.

Section 5 deals with performance evaluation of the decomposition algorithms. A spe-
ci�c methodology is proposed. First we create test images by recomposing structures,
textures, and noise reference images that are generated separatly. We de�ne some metrics
to evaluate the quality of the di�erent components obtained at the output of the decom-
position algorithms (especially, the problem of how to measure the remaining residue in
the noise).
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Before detailing the di�erent decomposition models, the �rst section provides some
preliminaries and notations like the wavelet, contourlet formalism. It also presents the
di�erent function spaces and their associated norms that are used in the remainder of
the paper.

We conclude by summarizing the di�erent models and their performance. We also
give some perspectives to this work.

2. Preliminaries

This section describes all the de�nitions used in the chapter. We start by recalling
the multiresolution formalism, specially based on wavelets and other geometric approachs
like curvelets and contourlets. We also introduce di�erent function spaces like the space
of bounded variations functions (BV ), Besov spaces, and so on. We complete these
descriptions by de�ning a space based on the contourlet expansion, which will be used
in the new three-part decomposition model presented in section 4.3.

2.1. Wavelets

Let us start with the notations and properties of wavelet analysis. The �rst wavelet ex-
pansion of a one dimensional (1D) signal appeared in the 1980's (Härdle et al. (1997); Mal-
lat (1999); Vidakovic and Mueller (1991)). The well-known contributors of the wavelet
theory are, but not restricted to, Meyer (1993), Mallat (1999), and Daubechies (1992).

In the following, we assume that we have a 1D signal but the D-dimensional exten-
sion is naturally obtained by using D separable transforms along the di�erent variables.
Wavelet analysis outperforms the Fourier representation. Fourier transform decomposes
a signal over a sine-cosine basis. This transform is well localized in frequency but not
in time (sine and cosine functions are de�ned over an in�nite domain). For example, if
we analyze a transient phenomenon, its Fourier transform covers all the frequency plane
while it is well localized in time. It is evident that a transform that is both localized
in time and frequency is needed. The �rst solution used a windowed-Fourier transform.
It allows decomposition of the time-frequency plane into many time-frequency atoms.
However, this transform is not completely satisfactory because it does not authorize
adaptable atoms. However we could be interested in analyzing many transient phenom-
ena with di�erent lengths, then adaptable atoms are necessary. The wavelet transform
a�ords us this opportunity, and we now recall its de�nition.

2.1.1. Continuous Case

Wavelet transform decomposes a signal over a set of translated and dilated versions of
a mother wavelet. A mother wavelet is a function ψ ∈ L2(R) that respects some criteria
as follows: ∫

R
ψ(t)dt = 0 zero mean, (1)

‖ψ‖L2 = 1 normalized, (2)
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and ψ needs to be centered on 0. If we denote a and b as the dilation and translation
parameters, respectively, then the set of wavelets is obtained from the mother wavelet ψ
by

ψa,b(t) =
1√
a
ψ

(
t− b
a

)
. (3)

Then, we can de�ne the wavelet transform of a function f ∈ L2(R) at time b and
scale a by (ψ∗ is the complex conjugate of ψ)

WT f (a, b) = 〈f, ψa,b〉 =
∫

R
f(t)

1√
a
ψ∗
(
t− b
a

)
dt. (4)

It is easy to see that a wavelet transform can be written as a convolution product
(denoted ?)

WT f (a, b) = f ? ψ̄a(b), where ψ̄a(t) =
1√
a
ψ∗
(
−t
a

)
. (5)

The following theorem gives the conditions that permit reconstruction of the function
f from its wavelet expansion.

Theorem 1 Let ψ ∈ L2(R) be a real wavelet that respects the following admissibility
condition:

Cψ =
∫ +∞

0

|ψ̂(ξ)|2

ξ
dξ < +∞, (6)

where ψ̂ is the Fourier transform of ψ. Then, all functions f ∈ L2(R) verify

f(t) =
1
Cψ

∫ +∞

0

∫
R
WT f (a, b)

1√
a
ψ

(
t− b
a

)
db
da

a2
(7)

and (Parseval relation)∫
R
|f(t)|2dt =

1
Cψ

∫ +∞

0

∫
R
|WT f (a, b)|dbda

a2
. (8)

A proof can be �nd in Mallat (1999).

Many papers in the literature deal with the choice of the mother wavelet ψ. According
to the concerned applications, we can impose some complementary constraints to the
wavelet (e.g. its regularity, the length of its support, the number of its zero moments).

2.1.2. Discrete Case

In practice, we have digital signals composed of N samples denoted f [n]. Let ψ(t) be
a continous wavelet where its support is [−K/2, K/2]; then the discrete wavelet, dilated
by 2j , is de�ned as

ψjn[k] =
1√
2j
ψ[2−jk − n]. (9)
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Then the discrete wavelet transform can be written as

WT f [n, j] =
∑
m

f [m]ψ∗jn[m] = 〈f, ψjn〉, (10)

and the reconstruction formula is true if ψ has some complementary properties, (see
Mallat (1999) for more details). Then, we have

f [m] =
+∞∑
j=0

∑
n

WT f [n, j]ψjn[n]. (11)

These relations show that �lter banks, de�ned from ψ, can be used to implement the
wavelet transform and its inverse.

2.2. Multiresolution Analysis

Multiresolution analysis is de�ned in Mallat (1999). Let {Vj}j∈Z be a set of closed
subspaces of L2(R). We said it is a multiresolution approximation if it meets the following
conditions:

∀(j, k) ∈ Z2 , f(t) ∈ Vj ⇔ f(t− 2jk) ∈ Vj , (12)

∀j ∈ Z , Vj+1 ⊂ Vj , (13)

∀j ∈ Z , f(t) ∈ Vj ⇔ f

(
t

2

)
∈ Vj+1, (14)

lim
j→+∞

Vj =
+∞⋂
j=−∞

Vj = {0}, (15)

lim
j→−∞

Vj =
+∞⋃
j=−∞

Vj = L2(R), (16)

and there exists a function θ such that {θ(t− n)}n∈Z is a Riesz basis of V0.

Let ϕ be a function (called the scale function) with its Fourier transform be de�ned
by:

ϕ̂(ω) =
θ̂(ω)(∑+∞

k=−∞ |θ̂(ω + 2kπ)|2
)1/2

. (17)

Then the set {ϕjn}n∈Z de�ned by

ϕjn(t) =
1√
2j
ϕ

(
t− n

2j

)
(18)

is an orthonormal basis of Vj . If we de�ne Wj = Vj 	 Vj+1, the wavelet set {ψjn}n∈Z
associated with ϕ (see Härdle et al. (1997); Mallat (1999); Vidakovic and Mueller (1991)
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to learn to build such functions) is an orthonormal basis of Wj . Then all functions
f ∈ L2(R) can be decomposed to

f(t) =
∑
n

αnϕ0n(t) +
+∞∑
j=0

∑
n

βjnψjn(t), (19)

where the coe�cients βjn = 〈f, ψjn〉 are the wavelet transform coe�cients and αn =
〈f, ϕ0n〉 are the coe�cients from the projection on the subspace V0. In other terms, we
have

(19)⇐⇒ f ∈ V0 ⊕
∞⊕
j=0

Wj . (20)

2.3. Directional Multiresolution Analysis

The two dimensional (2D) extension of a wavelet generally uses the separability prin-
ciple. It uses a 1D wavelet �lter along the horizontal and vertical directions. In natural
images, however, the information is not limited to these two directions. It is easy to un-
derstand that the multiresolution analysis needs to be extended to encompass directions
in the image. Many authors propose di�erent approachs to do this directional analysis.
This chapter describes only those best known in the literature: the ridgelets, curvelets,
and contourlets.

2.4. Ridgelets

In his doctoral dissertation, Candès (1998) proposes a new transform that deals with
directionality in images: the ridgelet transform.

The ridgelets functions ψa,b,θ are de�ned in a manner similar to wavelets but add the
notion of orientation (tuned by the θ parameter):

ψa,b,θ : R2 −→ R2 (21)

ψa,b,θ(x1, x2) =
1√
a
ψ

(
x1 cos θ + x2 sin θ − b

a

)
. (22)

The ψa,b,θ is constant along the lines x1 cos θ + x2 sin θ = c (c is a constant) and is
a wavelet ψ in the orthogonal direction. Many properties of the wavelet theory can be
transposed.

De�nition 1. The admissibility condition for a ridgelet is:

Kψ =
∫ ∣∣∣ψ̂(ξ)

∣∣∣2
|ξ|2

dξ <∞, (23)

which is equivalent to
∫
ψ(t)dt = 0.
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Morever, we assume that ψ is normalized:

⇒
∫ ∣∣∣ψ̂(ξ)

∣∣∣2
|ξ|2

dξ = 1. (24)

Under these assumptions, Candès de�nes the ridgelet transform of a function f by

De�nition 2. For a function f , the coe�cients of its ridgelet transform are given by

Rf (a, b, θ) =
∫
ψ∗a,b,θ(x1, x2)f(x1, x2)dx1dx2 =< f,ψa,b,θ >, (25)

and the reconstruction formula is given by

f(x1, x2) =
∫ 2π

0

∫ +∞

−∞

∫ +∞

0

Rf (a, b, θ)ψa,b,θ(x)
da

a3
db
dθ

4π
. (26)

In addition, the Parseval relation is veri�ed as in proposition 1 below,

Proposition 1 If f ∈ L1 ∩ L2(R2) and if ψ is admissible, then

‖f‖2L2 = cψ

∫
|〈f, ψa,b,θ〉|2

da

a3
db
dθ

4π
, (27)

where cψ = (4π)−1K−1
ψ .

The proof can be found in Candès (1998).
In pratice, the ridgelet transform can be implemented by using the Radon transform

and the 1D wavelet transform (see Candès (1998) for more details).

2.5. Curvelets

From the de�nition of the ridgelet transform, it is easy to see that this transform is
a global transform (we mean that it is e�cient to represent lines that go through the
entire image). But images contain more general edges that are present locally. Candès
and Donoho (1999); Candès et al. (2005); Donoho and Duncan (1999) propose a new
approach that provides a local directional multiresolution analysis called the curvelet
transform.
The idea is to do a speci�c tiling of the space and frequency planes by using two windows,
the radial window W (r) and the angular window V (t), where (r, θ) are the polar coor-
dinates in the frequency plane and r ∈ (1/2, 2). The window V is de�ned for t ∈ [−1, 1].
These windows obey the following admissibility conditions:

+∞∑
j=−∞

W 2(2jr) = 1 r ∈ (3/4, 3/2) (28)

and
+∞∑
l=−∞

V 2(t− l) = 1 t ∈ (−1/2, 1/2) (29)
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Then for each j > j0, a frequency window U is de�ned in the Fourier domain by

Uj(r, θ) = 2−3j/4W (2−jr)V
(

2bj/2cθ
2π

)
, (30)

where bj/2c is the integer part of j/2. Let ϕj(x) denote the function such that its
Fourier transform ϕ̂j(ω) = Uj(w) ((r, θ) are the polar coordinates corresponding to w =
(w1, w2)). Then we de�ne at scale 2−j , orientation θl, and position x

(j,l)
k a set of curvelets

by

ϕj,l,k(x) = ϕj

(
Rθl(x− x

(j,l)
k )

)
, (31)

where Rθl is the rotation by θl radians. Then the curvelet transform is simply de�ned
by the inner product between a function f ∈ R2 with the set of curvelets. A curvelet
coe�cient can be written

c(j, l, k) = 〈f, ϕj,l,k〉 =
∫

R2
f(x)ϕ∗j,l,k(x)dx. (32)

More details can be found in Candès et al. (2005). In their paper, the authors prove the
following proposition.

Proposition 2 Let f ∈ L2(R2) denote a function expanded over a set of curvelets ϕj,l,k;
we have the following reconstruction formula:

f =
∑
j,l,k

〈f, ϕj,l,k〉ϕj,l,k (Tight frame,) (33)

and the Parseval relation is veri�ed:∑
j,l,k

|〈f, ϕj,l,k〉|2 = ‖f‖2L2 , ∀f ∈ L2(R2). (34)

All details about the numerical aspects can be found in Candès et al. (2005).

2.6. Contourlets

In 1999, when Candès et al. proposed the curvelet transform, the authors showed
many promising results. The main drawback of the �rst version of curvelets is the
di�culty of its numerical implementation (the discrete curvelet transform was proposed
in 2005 Candès et al. (2005)). In order to �overcome� this problem, Do (2001, 2003);
Do and Vetterli (2001, 2002, 2003a,b); Po and Do (2006) proposed a new algorithm,
called the contourlet transform, initially designed in a discrete framework. The idea is
to combine a multiscale decomposition and directional �ltering at each scale (Figure 1).

The multiscale decomposition is obtained by using a Laplacian pyramid decomposi-
tion (LP) (Burt and Adelson (1983)). The directional �ltering uses a directional �lter
bank (DFB) based on quincunx �lters (Bamberger and Smith (1992)). In the next the-
orem, the authors show that this transform produces a tight frame.
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Figure 1: Contourlet transform principle.

Theorem 2 Let j be the scale, n the position, {lj}j6j0 the set of number of directions
for each scale j. Then, the set{

φj0,n(t); ρ(lj)
j,k,n(t)

}
j6j0, 06k62lj−1, n∈Z2

(35)

is a tight frame of L2(R2).

All details about the construction of functions φj0,n(t) and ρ(lj)
j,k,n(t) can be found in

Do (2001).
This implies

Corollary 1

f(t) =
∑
n

αnφj0,n(t) +
∑
j6j0

2lj−1∑
k=0

∑
n

βj,k,nρ
(lj)
j,k,n(t) (36)

or

f(t) =
∑
j∈Z

2lj−1∑
k=0

∑
n

βj,k,nρ
(lj)
j,k,n(t), (37)

where αn = 〈f |φj0,n〉 and βj,k,n = 〈f |ρ(lj)
j,k,n〉 are the contourlet transform coe�cients.
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2.7. Function Spaces

In Sections 3 and 4, we will use some function spaces and more particularly their
associated norms. This section brie�y describes the spaces of interest (it is assumed that
the reader knows the Lp spaces and d is the dimension). The goal of the di�erent spaces
is to characterize some properties like the di�erentiability and the regularity of functions.

2.7.1. Sobolev Spaces

The �rst spaces we are interested in are the Sobolev spaces W k,p. These spaces are
de�ned as the spaces of functions f such that they and their weak derivatives up to some
order k have a �nite Lp norm, for a given p > 1. These spaces are endowed with the
following norm:

‖f‖Wk,p =

(
k∑
i=0

‖f (i)‖pLp

)1/p

=

(
k∑
i=0

∫
|f (i)(t)|pdt

)1/p

. (38)

An interesting particular case is for p = 2, denoted Hk = W k,2, because of their
relation with the Fourier series. More information about the Sobolev spaces can be
found in the book by Adams (1975).

2.7.2. Besov Spaces

The next kind of spaces are Besov spaces Bsp,q. Functions taken in Bsp,q have s deriva-
tives in Lp. The parameter q permits more precise characterization of the regularity. A
general description of these spaces can be found in Triebel (1992). In this paper, we give
only their connection with wavelets. Indeed, di�erent expressions exists for the norm
associated with Besov space but one uses the wavelet coe�cients, see (39).

∀f ∈ Bsp,q ‖f‖Bsp,q =

[∑
n

|αn|p
]1/p

+

+∞∑
j=0

2j(
d
2−

1
p+s)q

[∑
n

2j
p
2 |βjn|p

]q/p1/q

. (39)

The homogeneous version is

∀f ∈ Ḃsp,q ‖f‖Ḃsp,q =

 +∞∑
j=−∞

2j(
d
2−

1
p+s)q

[∑
n

2j
p
2 |βjn|p

]q/p1/q

, (40)

where αn and βjn are the coe�cients issued from the wavelet expansion (see Section 2.2).

2.7.3. Ridgelet Spaces

In the same way as previous, Candès de�ne the ridgelet spaces Rsp,q endowed with
the norm based on the ridgelet coe�cients.
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De�nition 3. For s > 0 and p, q > 0, we said that f ∈ Rsp,q if f ∈ L1 and

Ave
u
‖Rf (u, .) ? ϕ‖Lp <∞

and

{
2js2j(d−1)/2

(
Ave
u
‖Rf (u, .) ? ψj‖pLp

)1/p
}
∈ lq(N), (41)

where Rf (u, t) =
∫
u.x=t

f(x)dx is the Radon transform of f (u = (cos θ; sin θ)). The
function ϕ is the scale function associated with ψ.

Then the induced norm is de�ned by

‖f‖Rsp,q = Ave
u
‖Rf (u, .) ? ϕ‖Lp

+

∑
j>0

(
2js2j(d−1)/2 (Aveu‖Rf (u, .) ? ψj‖pLp)1/p

)q
1/q

(42)

and its homogeneous version Ṙsp,q

‖f‖Ṙsp,q =

∑
j∈Z

(
2js2j(d−1)/2 (Aveu‖Rf (u, .) ? ψj‖pLp)1/p

)q
1/q

. (43)

As in the Besov case, these norms can be calculated from the ridgelet coe�cients. Let
wj(u, b)(f) = 〈f(x), ψj(u.x − b)〉 for j > 0 and v(u, b)(f) = 〈f(x), ϕ(u.x − b)〉 these
ridgelet coe�cients, then

‖f‖Rsp,q =
(∫
|v(u, b)(f)|pdudb

)1/p

+

∑
j>0

(
2js2j(d−1)/2

(∫
|wj(u, b)(f)|pdudb

)1/p
)q

1/q

. (44)

More information can be found in Candès (1998).

2.7.4. Contourlet Spaces

Inspired from the previous spaces, we propose to de�ne the contourlet spaces, which
will be denoted Cosp,q.

De�nition 4. Let s > 0 and p, q > 0, if f ∈ Cosp,q; then

‖f‖Cosp,q =

[∑
n

|αj0,n|p
]1/p

+


∑
j6j0

2j(
d
2−

1
p+s)q

2lj−1∑
k=0

∑
n

2j
p
2 |βj,k,n|p

q/p


1/q

, (45)
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or in the homogeneous case,

‖f‖Ċosp,q =


∑
j∈Z

2j(
d
2−

1
p+s)q

2lj−1∑
k=0

∑
n

2j
p
2 |βj,k,n|p

q/p


1/q

, (46)

where αj0,n and βj,k,n are the contourlet coe�cients mentioned in Section 2.6.

2.7.5. Bounded Variation (BV ) Spaces

The last space of interest is the BV space, the space of bounded variations functions.
This space is widely used in image processing because it is a good candidate to modelize
structures in images.

De�nition 5. The space BV over a domain Ω is de�ned as

BV =
{
f ∈ L1(Ω);

∫
Ω

|∇f | <∞
}
, (47)

where ∇f is the gradient, in the distributional sense, of f and∫
Ω

|∇f | = sup
−→ϕ

{∫
Ω

fdiv−→ϕ ; −→ϕ ∈ C1
0 (Ω,R2), |−→ϕ | 6 1

}
. (48)

This space is endowed with the following norm:

‖f‖BV = ‖f‖L1 +
∫

Ω

|∇f |. (49)

But in general, we only keep the second term, which is well known as the total variation
of f . In the rest of the paper, we will use the notation

J(f) =
∫

Ω

|∇f |. (50)

More information about the BV space is available in Haddad (2005); Vese (1996).

We now have all the basic tools needed to describe the image decomposition models.
The next two sections present the structures + textures and structures + textures +
noise models, respectively.

3. Structures + Textures Decomposition

The starting point of the image decomposition models is the work of Meyer (2001)
about the Rudin-Osher-Fatemi (ROF) algorithm (Rudin et al. (1992)). Let us recall
the ROF model. Assume f is an observed image that is the addition of the ideal scene
image u, which we want to retrieve, and a noise b. The authors propose to minimize the
following functional to get u:

FROFλ (u) = J(u) + λ‖f − u‖2L2 . (51)
12



This model assumes that u is in BV because this space preserves sharp edges. This
algorithm gives good results and is very easy to implement by using the nonlinear pro-
jectors proposed by Chambolle (2004) (see Appendix A).

Now if we take the image decomposition point of view, f = u + v, the functional in
Eq.(51) can be rewritten as

FROFλ (u, v) = J(u) + λ‖v‖2L2 . (52)

We remind the reader that decomposition means u is the structures part and v the
textures part. Meyer shows that this model is not adapted to achieve this decomposition.
In order to convince us, the following example illustrates that the more a texture is
oscillating, the more it is removed from both the u and v parts.

Example 1. Let v be a texture created from an oscillating signal over a �nite domain.
Then v can be written (x = (x1, x2)) as follows:

v(x) = cos(ωx1)θ(x), (53)

where ω is the frequency and θ the indicator function over the considered domain. Then
we can calculate the L2 and BV norms of v, respectively. We get

‖v‖L2 ≈ 1√
2
‖θ‖L2 , (54)

which is constant ∀ω and does not specially capture textures. In addition,

‖v‖BV =
ω

2π
‖θ‖L1 , (55)

which grows as ω →∞ and then clearly rejects textures.

In order to adapt the ROF model to capture the textures in the v component, Meyer
proposes to replace L2 space by another space, called G, which is a space of oscillat-
ing functions. He proves that this space is the dual space of BV (where BV = {f ∈
L2(R2) , ∇f ∈ L1(R2)}, which is close to the BV space and the total variation de-
scribed earlier in the paper); see Meyer (2001) for more theoretical details about these
spaces.

This space G is endowed by the following norm:

‖v‖G = inf
g

∥∥∥∥(|g1|2 + |g2|2
) 1

2

∥∥∥∥
L∞

, (56)

where g = (g1, g2) ∈ L∞(R2)×L∞(R2) and v = div g. If we calculate the G-norm of the
oscillating texture in Eq.(53) of example 1, we get

‖v‖G 6
C

|ω|
, (57)

where C is a constant. Then it is easy to see that this space G is well adapted to
capture textures. Now, the modi�ed functional performing the structures + textures
decomposition is

13



FYMλ (u, v) = J(u) + λ‖v‖G, (58)

where f = u+ v, f ∈ G, u ∈ BV , v ∈ G. The drawback of this model is the presence of
an L∞ norm in the the expression of the G-norm (this does not allow classic variational
calculus).

The �rst people who proposed a numerical algorithm to solve the Meyer model were
Vese and Osher (2002). Their approach was to use the theorem which tells that ∀f ∈
L∞(Ω), ‖f‖L∞ = limp→∞ ‖f‖Lp and a slightly modi�ed version of Meyer's functional:

FOVλ,µ,p(u, g) = J(u) + λ‖f − (u+ div g)‖2L2 + µ

∥∥∥∥√g2
1 + g2

2

∥∥∥∥
Lp
. (59)

Then variational calculus applies and results in a system of three connected partial
di�erential equations. All the details of the equations discretization are available in
Vese and Osher (2002). This algorithm works well but is very sensitive in the choice of
its parameters, which induced many instability.

Another way to solve Meyer model was proposed by Aujol (2004); Aujol et al. (2003,
2006). The authors propose a dual-method approach that naturally arises because of
the dual relation between the G and BV spaces. The problem is assumed to be in the
discrete case and de�ned over a �nite domain Ω. They proposed a modi�ed functional
to minimize.

FAUλ,µ (u, v) = J(u) + J∗
(
v

µ

)
+ (2λ)−1‖f − u− v‖2L2 (60)

and
(u, v) ∈ BV (Ω)×Gµ(Ω). (61)

The set Gµ is the subset in G where ∀v ∈ Gµ, ‖v‖G 6 µ. Moreover, J∗ is the
characteristic function over G1 with the property that J∗ is the dual operator of J
(J∗∗ = J). Thus,

J∗(v) =

{
0 if v ∈ G1

+∞ else.
(62)

The interesting point is that the precited Chambolle's projectors are the projector
over the sets Gµ,∀µ; these operators will be denoted PGµ in the rest of the paper. More
details about these projectors can be found in Chambolle (2004) and recalled in Appendix
A. Then the authors propose an iterative algorithm that gives the minimizers (û, v̂) of
FAUλ,µ (u, v).

• Let us �x v, we seek for the minimizer u of

inf
u

(
J(u) + (2λ)−1‖f − u− v‖2L2

)
. (63)

• Now we �x u and seek for the minimizer v of

inf
v
J∗
(
v

µ

)
+ ‖f − u− v‖2L2 . (64)

14



Chambolle's results show that the solution of Eq.(63) is given by

û = f − v̂ − PGλ(f − v̂) (65)

and the solution of Eq. (64) by

v̂ = PGµ(f − û). (66)

Then the numerical algorithm is

1. Initialization:
u0 = v0 = 0

2. Iteration n+ 1:

vn+1 = PGµ(f − un)
un+1 = f − vn+1 − PGλ(f − vn+1)

3. We stop the algorithm if

max (|un+1 − un|, |vn+1 − vn|) 6 ε

or if we reach a prescribed maximal number of iterations.

The authors prove that the minimizers (û, v̂) are also minimizers of the original Meyer
functional Eq. (58), and that it is better to start by calculating vn+1 than un+1. See
Aujol (2004); Aujol et al. (2003) for the complete proofs.

Figure 2 presents the three original images (Barbara, House, and Leopard) use for
tests in the rest of the paper. Figures 3, 4, and 5 illustrate the results from Aujol's
algorithm. The chosen parameters are (λ = 1, µ = 100), (λ = 10, µ = 1000), and
(λ = 5, µ = 1000) respectively. For clarity reasons, we enhanced the contrasts of the
textured components. On each test we see that the separation between structures and
textures works well. Some residual textures remain in the structures part; this can
be explained by the fact the parameter λ acts as a tradeo� between the �power� of
separability and too much regularization of u.

As the G-norm is di�cult to handle, Meyer (2001) proposes to replace the space G by
the Besov space Ḃ∞−1,∞ because G ⊂ Ḃ∞−1,∞ (in the following, we will denote E = Ḃ∞−1,∞).
The advantage is that the norm of a function v over this space can be de�ned from its
wavelet coe�cients. The corresponding model proposed by Meyer is

FYM2
λ (u, v) = J(u) + λ‖v‖E (67)

Aujol and Chambolle were the �rst to propose a numerical algorithm that uses the
space E. As previously, they reformulated the model in a dual-method approach, where
Eµ is the subset of E, where ∀f ∈ Eµ, ‖f‖E 6 µ and B∗(f) is the indicator function
over E1. Then the functional to minimize is

FACλ,µ (u, v) = J(u) +B∗
(
v

µ

)
+ (2λ)−1‖f − u− v‖2L2 . (68)
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Figure 2: Original Barbara, House, and Leopard images.

Structures Textures

Figure 3: BV -G structures + textures image decomposition of Barbara image.
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Structures Textures

Figure 4: BV -G structures + textures image decomposition of House image.

Structures Textures

Figure 5: BV -G structures + textures image decomposition of Leopard image.

Chambolle et al. (1998) proved the existence of a projector on this space, denoted
PEµ , de�ned by

PEµ(f) = f −WST (f, 2µ), (69)

where WST is the wavelet soft thresholding operator (we mean that we �rst perform
the wavelet expansion of the function, then we do the soft thresholding of the wavelet
coe�cients, and end by reconstructing the image). Then the new numerical algorithm is
as follows:

1. Initialization:
u0 = v0 = 0

17



2. Iteration n+ 1:

vn+1 = PEµ(f − un) = f − un −WST (f − un, 2µ)
un+1 = f − vn+1 − PGλ(f − vn+1)

3. We stop if
max (|un+1 − un|, |vn+1 − vn|) 6 ε

or if we reach a prescribed maximal number of iterations.

The results obtained by this model are presented in Figures 6, 7, and 8.

Structures Textures

Figure 6: BV -Eµ structures + textures image decomposition of Barbara image.

Structures Textures

Figure 7: BV -Eµ structures + textures image decomposition of House image.

This algorithm works, but its main drawback is that it captures some structures
informations (like the legs of the table in the Barbara image; see Figure 6). This behavior

18



Structures Textures

Figure 8: BV -Eµ structures + textures image decomposition of Leopard image.

appears because the space E is much bigger than the space G, in particular the space E
contains functions that are not only textures.

Osher et al. (2002) explore the possibility of replacing the space G by the Sobolev
space H−1. They propose the following functional (v is obtained by v = f − u):

FV Sλ (u) = J(u) + λ‖f − u‖2H−1 , (70)

where ‖v‖H−1 =
∫
|∇(∆−1)v|2dxdy. The authors give the corresponding Euler-Lagrange

equations and their discretization. Another way to numerically solve the problem is to
use a modi�ed version of Chambolle's projector PH−1

λ
(see Appendix A). Figures 9, 10,

and 11 present the results obtained with this algorithm.

Structures Textures

Figure 9: BV -H−1 structures + textures image decomposition of Barbara image.

Some other models were proposed that test di�erent spaces to replace BV or G
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Structures Textures

Figure 10: BV -H−1 structures + textures image decomposition of House image.

Structures Textures

Figure 11: BV -H−1 structures + textures image decomposition of Leopard image.

spaces. We mention the work of Aujol and Chambolle (2005); Aujol and Gilboa (2006)
who propose replacing the space BV by the smaller Besov space B1

1,1, or replacing G by
some Hilbert spaces, which permits the possibility of extracting textures with a certain
directionality. Haddad (2005) proposes using the Besov space Ḃ1

1,∞, instead of BV (the
norms over these two spaces are equivalent) with the L2 norm for the v part. J.B. Garnett

and Vese (2005); Triet and Vese (2005) study the use of the spaces div (BMO), ˙BMO
−α

,
and Ẇ−α,p to modelize the textures component.

4. Structures + Textures + Noise Decomposition

The previous algorithms yield good results but are of limited interest for noisy images
(we add a gaussian noise with σ = 20 on each test image of Figure 2; the corresponding
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noisy test images can be viewed in Figure 12). Indeed, noise can be viewed as a very
highly oscillatory function (this means that noise can be view as living in the space G).
Therefore, the algorithms incorporate the noise in the textures components. Then the
textures are corrupted by noise (see Figure 13 for example).

Figure 12: Original Barbara, House, and Leopard images corrupted by gaussian noise (σ = 20).

In this section, we present some extension of the two-component model to the three-
component model, f = u+v+w, which could discriminate among structures (u), textures
(v), and noise (w).

4.1. BV -G-G Local Adaptative Model

In Gilles (2007b), we proposed a new model to decompose an image into three parts:
structures (u), textures (v), and noise (w). As in the u + v model, we consider that
structures and textures are modelized by functions in BV and G spaces, respectively.
We also consider a zero mean gaussian noise added to the image. Let us view noise as
a speci�c very oscillating function. In virtue of Meyer's work (Meyer (2001)), where it
is shown that the more a function is oscillatory, the smaller its G-norm is, we propose
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Structures Textures

Figure 13: BV -G structures + textures image decomposition of the noisy Barbara image.

to modelize w as a function in G and consider that its G-norm is much smaller than the
norm of textures (‖v‖G � ‖w‖G). These assumptions are equivalent to choosing

v ∈ Gµ1 , w ∈ Gµ2 , where µ1 � µ2. (71)

To increase the performance, we propose adding a local adaptability behavior to the
algorithm following an idea proposed by Gilboa et al. (2003). These authors investigate
the ROF model given by Eq.(51) and propose a modi�ed version that can preserve
textures in the denoising process. To do this, they do not choose λ as a constant on the
entire image but as a function λ(f)(x, y) which represents local properties of the image.
In a cartoon-type region, the algorithm enhances the denoising process by increasing
the value of λ; in a texture-type region, the algorithm decreases λ to attenuate the
regularization to preserve the details of textures. So λ(f)(x, y) can be viewed as a
smoothed partition between textured and untextured regions.
Then, in order to decompose an image into three parts, we propose to use the following
functional:

F JGλ,µ1,µ2
(u, v, w) = J(u) + J∗

(
v

µ1

)
+ J∗

(
w

µ2

)
+ (2λ)−1‖f − u− ν1v − ν2w‖2L2 , (72)

where the functions νi represent the smoothed partition of textured and untextured re-
gions (and play the role of λ in Gilboa's paper). The νi functions must have the following
behavior:

• for a textured region, we want to favor v instead of w. This is equivalent to ν1

close to 1 and ν2 close to 0,

• for an untextured region, we want to favor w instead of v. This is equivalent to ν1

closed to 0 and ν2 close to 1.
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We see that ν1 and ν2 are complementary, so it is natural to choose ν2 = 1 − ν1 :
R2 →]0; 1[. The choice of ν1 and ν2 is discussed after the following proposition, which
characterizes the minimizers of F JGλ,µ1,µ2

(u, v, w).

Proposition 3 Let u ∈ BV , v ∈ Gµ1 , and w ∈ Gµ2 be the structures, textures, and noise
parts, respectively, and f the original noisy image. Let the functions (ν1(f)(., .), ν2(f)(., .))
be de�ned on R2 →]0; 1[, and assume that these functions could be considered as locally
constant compared to the variation of v and w. Then a minimizer de�ned by

(û, v̂, ŵ) = arg
(u,v,w)∈BV×Gµ1×Gµ2

minF JGλ,µ1,µ2
(u, v, w), (73)

is given by

û = f − ν1v̂ − ν2ŵ − PGλ(f − ν1v̂ − ν2ŵ), (74)

v̂ = PGµ1

(
f − û− ν2ŵ

ν1

)
, (75)

ŵ = PGµ2

(
f − û− ν1v̂

ν2

)
, (76)

where PGµ denotes Chambolle's non-linear projectors (see Appendix A).

The proof of this proposition can be found in Gilles (2007b). As in the two-part
BV -G decomposition model, we get an equivalent numerical scheme:

1. Initialization: u0 = v0 = w0 = 0,
2. Compute ν1 and ν2 = 1− ν1 from f ,

3. Compute wn+1 = PGµ2

(
f−un−ν1vn

ν2+κ

)
, (κ is a small value in order to prevent the

division by zero),

4. Compute vn+1 = PGµ1

(
f−un−ν2wn+1

ν1+κ

)
,

5. Compute un+1 = f − ν1vn+1 − ν2wn+1 − PGλ(f − ν1vn+1 − ν2wn+1),
6. If max{|un+1 − un|, |vn+1 − vn|, |wn+1 − wn|} 6 ε or if we did Nstep

iterations then stop the algorithm, else jump to step 3.

Concerning the choice of the νi functions, we were inspired by the work of Gilboa
et al. (2003). The authors choose to compute a local variance on the texture + noise
part of the image obtained by the ROF model (f − u). In our model, we use the same
strategy but on the v component obtained by the two parts decomposition algorithm.
This choice is implied by the fact that the additive gaussian noise can be considered as
orthogonal to textures. As a consequence, the variance of a textured region is larger than
the variance of an untextured region.
So, in practice, we �rst compute the two-part decomposition of the image f . On the
textures part, for all the pixels (i, j), we compute the local variance on a small window
(odd size L) centered on (i, j). At the least, we normalized it to obtain the values in
]0; 1[. All the details about the computation of the νi's function can be found in Gilles
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Figure 14: Texture partition ν1 obtained by local variance computation.

Structures Textures

Noise

Figure 15: BV -G-G structures + textures + noise image decomposition of Barbara image.

(2007b). Figure 14 shows an example from the noisy Barbara image. As expected, the
variance is higher in the textured regions and lower in the others.
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Structures Textures

Noise

Figure 16: BV -G-G structures + textures + noise image decomposition of House image.

Figures 15, 16, and 17 show the results of the u+ v + w decomposition we obtained
by the BV -G-G local adaptive model. This model can separate noise from the textures.
If we look more precisely, we can see that some residual noise remains in the textures,
and some textures are partially captured in the noise part. This is due to the choice of
the parameters λ, µ1, and µ2 which act on the separability power of the algorithm.

4.2. Aujol-Chambolle BV -G-E Model

The same time as our work, Aujol and Chambolle (2005) thought of the same struc-
tures + textures + noise decomposition problem. They proposed a model close to our
model described in the previous subsection but with the di�erence that they consider
the noise as a distribution taken in the Besov space E = Ḃ∞−1,∞. Then the associated
functional is

FAC2
λ,µ,δ(u, v, w) = J(u) + J∗

(
v

µ

)
+B∗

(w
δ

)
+ (2λ)−1‖f − u− v − w‖2L2 , (77)
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Structures Textures

Noise

Figure 17: BV -G-G structures + textures + noise image decomposition of Leopard image.

where u ∈ BV , v ∈ Gµ, and w ∈ Eδ as de�ned in the previous sections. The authors
prove that the minimizers are (see Aujol and Chambolle (2005)):

û = f − v̂ − ŵ − PGλ(f − v̂ − ŵ), (78)

v̂ = PGµ(f − û− ŵ), (79)

ŵ = PEδ(f − û− v̂) = f − û− v̂ −WST (f − û− v̂, 2δ), (80)

whereWST (f− û− v̂, 2δ) is the Wavelet Soft Thresholding operator applied on f− û− v̂
with a threshold set to 2δ.

Then the numerical algorithm is given by

1. Initialization: u0 = v0 = w0 = 0,
2. Compute wn+1 = f − un − vn −WST (f − un − vn, 2δ),
3. Compute vn+1 = PGµ(f − un − wn+1),
4. Compute un+1 = f − vn+1 − wn+1 − PGλ(f − vn+1 − wn+1),
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5. If max{|un+1 − un|, |vn+1 − vn|, |wn+1 − wn|} 6 ε or if we performed Nstep
iterations, then stop the algorithm, else jump to step 2.

The results of this algorithm on our test images are shown in Figures 18, 19, and
20, respectively. We can see that textures are better denoised by this model. This is
a consequence of a better noise modeling by distributions in the Besov space. But the
residual texture is more important than the one given by our algorithm in the noise part.
Another drawback appears in the structures part; the edges in the image are damaged
because some important wavelet coe�cients are removed. Previously, Gilles (2007b)
provides the possibility to add the local adaptivity behavior of the BV -G-G model to
the BV -G-E model. We refer the reader to Gilles (2007b) to see the BV -G-E local
adaptivity functional and �nd the corresponding results. This modi�ed version shows
less improvement compared to the original. We prefer to explore the replacement of
wavelets by new geometric multiresolution tools such as contourlets.

Structures Textures

Noise

Figure 18: BV -G-E structures + textures + noise image decomposition of Barbara image.
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Structures Textures

Noise

Figure 19: BV -G-E structures + textures + noise image decomposition of House image.

4.3. The BV -G-Ċo
∞
−1,∞ Decomposition Model

As mentionned previously, the new directional multiresolution tools, such as curvelets
or contourlets, exhibit very good results in denoising. They also better reconstruct the
edge in an image. So, the idea to replace the use of wavelet by curvelets or contourlets
naturally arises. In this paper, we focus on the choice of contourlets. This choice is
equivalent to changing the Besov space in the model described in the previous subsection
by the homogeneous contourlet space Ċo

∞
−1,∞. Then, the equivalent functional is given

in Eq.(81) as below:

FCoλ,µ,δ(u, v, w) = J(u) + J∗
(
v

µ

)
+ J∗Co

(w
δ

)
+ (2λ)−1‖f − u− v − w‖2L2 , (81)
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Structures Textures

Noise

Figure 20: BV -G-E structures + textures + noise image decomposition of Leopard image.

where J∗Co(f) is the indicator function over the set Co1 if we denote Coδ =
{
f ∈ Co∞−1,∞/‖f‖Co∞−1,∞

6 δ
}

(norm over the contourlet spaces is de�ned in the subsection 2.7.4) de�ned by

J∗Co(f) =

{
0 if f ∈ Co1

+∞ else.
(82)

Then, the following proposition gives the solutions that minimize the previous func-
tional.

Proposition 4 Let u ∈ BV , v ∈ Gµ, w ∈ Coδ be the structures, textures, and noise
components derived from the image decomposition. Then the solution

(û, v̂, ŵ) = arg
(u,v,w)∈BV×Gµ×Coδ

inf FCoλ,µ,δ(u, v, w) (83)
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is given by

û = f − v̂ − ŵ − PGλ(f − v̂ − ŵ)
v̂ = PGµ (f − û− ŵ)
ŵ = f − û− v̂ − CST (f − û− v̂; 2δ) ,

where PGλ is the Chambolle nonlinear projector and CST (f, 2δ) is the contourlet soft
thresholding operator of f − u− v.

Proof. The components û, v̂ are obtained by the same arguments used in the proof of
Proposition 3 (this proof is available in Gilles (2007b)). The particular point concerns
the expression of ŵ expressed with the soft thresholding of the contourlet coe�cients.
Assume we want to minimize FCoλ,µ,δ(u, v, w) compared to w; it is equivalent to �nd w
solution of (we set g = f − u− v)

ŵ = arg
w∈Coδ

min
{
‖g − w‖2L2

}
. (84)

We can replace it by its dual formulation: ŵ = g − ĥ, such that

ĥ = arg
h∈Co11,1

min
{

2δ‖h‖Co11,1 + ‖g − h‖2L2

}
. (85)

We can use the same approach used by Chambolle et al. (1998).
Let (cj,k,n)

j∈Z,06k62(lj),n∈Z2 and (dj,k,n)
j∈Z,06k62(lj),n∈Z2 denote the coe�cients is-

sued from the contourlet expansions of g and h, respectively. As contourlets form a tight
frame, with a bound of 1, we have (we denote Ω = Z× J0, 2(lj)K× Z2)

‖g‖2L2
=

∑
(j,k,n)∈Ω

|cj,k,n|2. (86)

Then Eq.(85) can be rewritten as∑
(j,k,n)∈Ω

|cj,k,n − dj,k,n|2 + 2δ
∑

(j,k,n)∈Ω

|dj,k,n|, (87)

which is equivalent to
|cj,k,n − dj,k,n|2 + 2δ|dj,k,n|. (88)

However, Chambolle et al. (1998) prove that the solution of this kind of problem is the
soft thresholding of the coe�cients (cj,k,n) with 2δ as the threshold.

Then ĥ = CST (g, 2δ), which by duality implies that ŵ = g−CST (g, 2δ). We conclude
that

ŵ = f − û− v̂ − CST (f − û− v̂, 2δ) (89)

which end the proof.

The corresponding numerical scheme is the same as in the BV -G-E algorithm, except
we replace the wavelet expansion by the contourlet expansion in the soft thresholding:
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1. Initialization: u0 = v0 = w0 = 0,
2. Compute wn+1 = f − un − vn − CST (f − un − vn, 2δ),
3. Compute vn+1 = PGµ(f − un − wn+1),
4. Compute un+1 = f − vn+1 − wn+1 − PGλ(f − vn+1 − wn+1),
5. If max{|un+1 − un|, |vn+1 − vn|, |wn+1 − wn|} 6 ε or if we performed Nstep

iterations, then stop the algorithm; else jump to step 2.

Figures 21, 22, and 23 show the results obtained by replacing wavelets by contourlets.
The advantage of using geometric frames is that it preserves well the integrity of oriented
textures as seen in the zoomed images in Figure 24.

In this section, we presented many decomposition models. We can imagine the use
of other frames and basis like curvelets, cosines, and so on. The idea of decomposing
an image by thresholding di�erent basis expansion coe�cients corresponds to the recent
theory of morphological component analysis (MCA) (J. Bobin and Moudden (2007);
J. Bobin and Donoho (2007)). This approach seeks sparse representation of the di�erent
components and is useful for sources separation.

5. Performance Evaluation

The previous section described di�erent decomposition models based on speci�c func-
tion spaces. But one question arises: Which is the best one?

This section adresses this question by de�ning well-adapted criteria and their associ-
ated metrics. We build a special test image by creating di�erent components separatly
and then by adding them. We will denote f0 the test image composed of u0 (the struc-
tures reference image) + v0 (the textures reference image) + w0 (the noise reference
image). We �nish by giving the measures obtained for this image.

5.1. Test Image

Because we want to compare the quality of each extracted components, we will create
speci�c components: u0 for structures, v0 for textures, and w0 for noise. Textures are
built by sine functions over some �nite domains; structures are made by drawing some
shapes with an adapted software like GIMP. The noise part is simply a gaussian noise
with σ = 20. The u0 and v0 reference parts and the recomposed test image are shown in
Figure 25.

5.2. Evaluation Metrics

Assume the test image is composed of known reference images u0, v0, and w0. We
choose the following criteria to measure the decomposition quality: the L2-norms of
errors u−u0 and v−v0, where u and v are the structures and textures components issued
from the decomposition. Another quantity that is interesting to evaluate is the residual
structures + textures present in the noise component w. To measure this quantity we
prove the following proposition.
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Structures Textures

Noise

Figure 21: BV -G-Co structures + textures + noise image decomposition of Barbara image.

Proposition 5 Let b(i, j) denote a gaussian noise of variance σ2 and d(i, j) an image
free of noise (we assume that the intercorrelation between b and d is negligible). Let
f = Ad + b be a simulated noise + residue image where A ∈ R corresponds to residue
level. Then

‖γf − γb‖L2 ≈ A2, (90)

where γf and γb are the autocorrelation functions of f and b, respectively.

Proof. We start by calculating the autocorrelation function of f :

γf (k, l) =
∑

(i,j)∈Z2

f(i, j)f∗(i+ k, j + l). (91)
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Noise

Figure 22: BV -G-Co structures + textures + noise image decomposition of House image.

However, we assume that images are real, then f(i, j) = f∗(i, j) and we deduce that

γf (k, l) =
∑

(i,j)∈Z2

[Ad(i, j) + b(i, j)] [Ad(i+ k, j + l) + b(i+ k, j + l)] (92)

=
∑

(i,j)∈Z2

A2d(i, j)d(i+ k, j + l) +
∑

(i,j)∈Z2

b(i, j)b(i+ k, j + k)+

∑
(i,j)∈Z2

[Ad(i, j)b(i+ k, j + l) +Ad(i+ k, j + l)b(i, j)] (93)

= A2γd(k, l) + γb(k, l) +A (γdb(k, l) + γbd(k, l)) (94)

Now we examine the norm ‖.‖L2 of this autocorrelation function. First, notice that
γb(k, l) = σ2δ(k, l) (where δ(k, l) is the Kronecker symbol) because we assumed that the
noise is gaussian. The statement of the proposition assumed that the intercorrelations
are negligible; in pratice, it is easy to check that the quantity A (γdb(k, l) + γbd(k, l)) is
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Noise

Figure 23: BV -G-Co structures + textures + noise image decomposition of Leopard image.

negligible compared to A2γd(k, l). We deduce that

γf (k, l)− γb(k, l) ≈ A2γd(k, l); (95)

then, by passing to the norm, we get

‖γf − γb‖L2 ≈ A2‖γd‖L2 . (96)

To illustrate this proposition, assume that we take the image in Figure 26 as d(i, j)
and we generate an image b(i, j) full of gaussian noise (σ = 20). Then we compose the
image f = Ad+ b for the di�erent values A ∈ {0.05; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9}
(this means that more and more residue appears as A increases, see Figure 27 top row).

Figure 28 gives the measured values of ‖γf − γb‖L2 and shows the associated graph.
As announced by the proposition, we show the quadratic behavior of the norm of the
autocorrelation di�erences as A grows. We will use this metric in the next subsection to
evaluate the residual quantity in the noise parts at the output of the di�erent decompo-
sition algorithms.
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Wavelet thresholding Contourlet thresholding

Figure 24: Zoomed image for the textured components of wavelet, and contourlet, based algorithms.

Figure 25: Structures and textures reference images and the recomposed test image.

Figure 26: Residual reference image.

5.3. Image Decomposition Performance Evaluation

In this subsection we apply three-part image decomposition on the test image built
in subsection 5.1 and use the metrics de�ned in subsection 5.2 to evaluate their perfor-
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A = 0.05 A = 0.3 A = 0.8

Figure 27: Noisy reference images a�ected by di�erent residual levels and their associated autocorrelation
images.

A ‖γf − γb‖L2

0.05 849.093432

0.1 3312.071022

0.2 13099.095280

0.3 29367.800483

0.4 52118.223554

0.5 81350.371724

0.6 117064.247377

0.7 159259.851531

0.8 207937.184693

0.9 263096.247142

Figure 28: Results of the measure norm ‖γf −γb‖L2 for the di�erent values of A (left) and its associated
graph.

mances. In this chapter, we restrict the choice of the di�erent parameters to only the
ones that give the best visual performances, but in the future, a more global, in terms of
parameters variability, test could be to explore the complete behaviors of the algorithms.
The choosen parameters are

• Algorithm F JG: λ = 10, µ1 = 1000, µ2 = 100, and a window size of 3× 3 pixels,
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• Algorithm FAC2: λ = 1, µ = 500 and δ = 9.4 (κ = 0.2 and σ = 20),

• Algorithm FCo: λ = 1, µ = 500 and δ = 23.5 (κ = 0.5 and σ = 20).

Figure 29 shows the outputs of the di�erent algorithms while table 1 gives the corre-
sponding measures.

Figure 29: Outputs of the decomposition algorithms. First row: FJG algorithm; second row: FAC2

algorithm; last row: FCo algorithm.

We can see the BV -G-G-based algorithm F JG has the smallest error for the structures
image but the textures are slightly less preserved than the contourlet-based model FCo.
Its noisy part is of the same quality as the wavelet-based model FAC2. Moreover, it is
clear the FCo algorithm gives the best denoising performance and has the least residue; it
also has the best score for the textures quality. Even if the visual quality seems to be close
to the F JG algorithm, the contourlet-based model has the worst score on the structures
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Algorithm F JG FAC2 FCo

‖ũ− u0‖L2 792.8 873.5 984.6

‖ṽ − v0‖L2 1844.9 2832.4 1598.6

‖γw − γw0‖L2 423.2 423.5 255.3

Table 1: Evaluation Measures Obtained for All u, v, w Decomposition Algorithms.

component. Then globally, as expected, the model based on contourlet expansion gives
the best decomposition.

6. Conclusion

This chapter provides an overview of structures + textures image decomposition. We
also present the extension to noisy images decomposition and show that it is necessary to
adopt a three-part decomposition model (structures + textures + noise). The di�erent
models are based on the bounded-variation space to describe the structures component
of an image. The textures are de�ned by the space G of oscillating functions proposed
by Meyer; di�erent stategies can be used for the noise. Some other function spaces can
be chosen; most often it is equivalent to choosing the best basis or frame to represent the
di�erent components. This approach is the same philosophy as the principle of morpho-
logical component analysis recently introduced by the work of J. Bobin and Moudden
(2007); J. Bobin and Donoho (2007).

An interesting property used in the BV -G-G model is the local adaptibility of the
algorithm by choosing a nonconstant parameter ν. Some recent theoretical work on the
Besov and Triebel-Lizorkin spaces seems to provide some insight on the local behavior
of an image (in terms of local scales). Here this approach is used to improve the quality
of the decomposition.

The main problem of the decomposition models, and it remains an open question,
is the choice of the di�erent parameters. Aujol et al. (2006) propose a method of au-
tomatically selecting the parameter λ, but it is very expansive in computing time. We
currently start some work to �nd some solutions.

We have proposed a method, which consists of building speci�c test images and using
three di�erent metrics, to evaluate the performance of the quality of components issued
from the di�erent decomposition algorithms. The �rst tests seem to con�rm that the
model based on the thresholding of contourlets coe�cients is the best one. However,
more complete tests based on di�erent test images with di�erent kind of textures, noise,
or structures and by tuning the di�erent parameters are needed. This could help us to
understand completely the behaviors of this kind of algorithm.

The last topic explored in this study is the application of the image decomposition.
A previous study, Gilles (2007a), proves that the BV -G model enhanced the thin and
long structures. Then, we use the textures component as the input of a road detection
algorithm in aerial images. We believe that many applications could be created in the
future.
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A. Chambolle's Nonlinear Projectors

Chambolle (2004) proposes an algorithm based on a nonlinear projector to solved
a certain category of total variation based functional. This appendix summarizes this
work. Some proofs are provided because they are relevant to the rest of the chapter.

A.1. Notations and De�nitions

We assume the processed image is sizeM×N . We denoteX = RM×N and Y = X×X.

De�nition 6. Let u ∈ X; then the discret gradient of u, written ∇u ∈ Y = X ×X, is
de�ned by

(∇u)i,j =
(
(∇u)1

i,j , (∇u)2
i,j

)
(97)

with ∀i, j ∈ J0, . . . ,M − 1K× J0, . . . , N − 1K

(∇u)1
i,j =

ui+1,j − ui,j if i < M − 1

0 if i = M − 1
(98)

(∇u)2
i,j =

ui,j+1 − ui,j if j < N − 1

0 if j = N − 1
. (99)

De�nition 7. Let p ∈ Y (p = (p1, p2)), we de�ne the numerical divergence operator
div : Y → X such that div = −∇∗ (∇∗ is the adjoint operator of ∇) by the following:

(div p)i,j =


p1
i,j − p1

i−1,j if 0 < i < M − 1
p1
i,j if i = 0
−p1

i−1,j if i = M − 1
+


p2
i,j − p2

i,j−1 if 0 < j < N − 1
p2
i,j if j = 0
−p2

i,j−1 if j = N − 1
.

(100)
We recall that 〈−div p, u〉X = 〈p,∇u〉Y .

A.2. Total Variation

In the discrete case, the total variation can be written by:

J(u) =
∑

0<i<M−1
0<j<N−1

|(∇u)i,j | (101)

=
∑

0<i<M−1
0<j<N−1

√(
(∇u)1

i,j

)2 +
(
(∇u)2

i,j

)2
. (102)

However, J is a 1-homogeneous function (J(λu) = λJ(u)); then if we apply the Legendre-
Fenchel transform, we get:

J∗(v) = sup
u
〈u, v〉X − J(u) (103)

with
〈u, v〉X =

∑
i,j

ui,jvi,j , (104)
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where J∗ is the characteristic function of the closed convex set K:

J∗(v) = χK(v) =

{
0 if v ∈ K
+∞ else

. (105)

We have the property J∗∗ = J .

In the continuous case (see the properties of the BV space), we have:

K = G1 =
{
div ξ : ξ ∈ C1

c (Ω,R2); |ξ(x)| 6 1,∀x ∈ Ω
}

(106)

then

J(u) = sup
ξ

{∫
Ω

u(x)div ξ(x)dx : ξ ∈ C1
c (Ω,R2); |ξ(x)| 6 1,∀x ∈ Ω

}
; (107)

however,
∫

Ω
u(x)div ξ(x)dx = 〈u,div ξ〉X , then we can write:

J(u) = sup
ξ
〈u,div ξ〉X , (108)

which is equivalent, if we write v = div ξ, to

J(u) = sup
v∈K
〈u, v〉X . (109)

Now, we would like to have the same kind of expression for the discrete case. Chambolle
proves the following lemma:

Lemma 1 In the discrete case, we have:

J(u) = sup
v∈G1

〈v, u〉 , (110)

where G1 = {div p; p ∈ Y ; |pi,j | 6 1} . (111)

De�nition 8. Let us de�ne the inner product over Y : let p ∈ Y, q ∈ Y such that
p =

(
p1, p2

)
and q =

(
q1, q2

)
; then

〈p, q〉Y =
∑

0<i<M−1
0<j<N−1

(p1
i,jq

1
i,j + p2

i,jq
2
i,j). (112)

A.3. Chambolle's Projectors

We want to solve

min
u∈X

‖u− g‖2

2λ
+ J(u) (113)

with g ∈ X, λ > 0, ‖.‖ is the euclidean norm de�ned by ‖u‖2 = 〈u, u〉X .

If we apply Euler-Lagrange calculus to Eq.(113), we get
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2(u− g)
2λ

+ ∂J(u) 3 0 (114)

⇐⇒ u− g + λ∂J(u) 3 0, (115)

where ∂J is the subdi�erential of J de�ned by

w ∈ ∂J(u)⇐⇒ J(v) > J(u) + 〈w, v − u〉X ∀v, (116)

then Eq.(115) can be written as

g − u
λ
∈ ∂J(u) (117)

⇐⇒ ∂J∗
(
g − u
λ

)
3 u (118)

⇐⇒ u

λ
∈ 1
λ
∂J∗

(
g − u
λ

)
(119)

⇐⇒ g

λ
∈ g − u

λ
+

1
λ
∂J∗

(
g − u
λ

)
. (120)

If we reach a minimizer of ∥∥w − ( gλ)∥∥2

2
+

1
λ
J∗(w) (121)

then by applying Euler-Lagrange calculus to Eq.(121), we get

w − g

λ
+

1
λ
∂J∗(w) 3 0 (122)

⇐⇒ w +
1
λ
∂J∗(w) 3 g

λ
. (123)

Thanks to Eq.(120), we see that

w =
g − u
λ

(124)

is a minimizer of Eq.(121).

However as J∗(w) = χG1(w) and if w = PG1

(
g
λ

)
(the projector operator over G1),

then J∗(w) = 0 and
∥∥w − g

λ

∥∥ is minimum. We deduced that

PG1

( g
λ

)
=
g − u
λ

(125)

u = g − λPG1

( g
λ

)
. (126)

We have PGλ
(
g
λ

)
= λPG1

(
g
λ

)
, then we have

u = g − PGλ
( g
λ

)
. (127)
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Now, we need to �nd how to calculate PGλ(g). Chambolle gives the following result:

computing PGλ(g)⇐⇒ min
p∈Y

{
‖λdiv (p)− g‖2; |pi,j |2 6 1 ∀i, j

}
. (128)

The Karush-Kuhn-Tucker conditions showed the existence of a Lagrange multiplier αi,j >
0 associated with each constraint of Eq.(128) such that we have ∀i, j:

− (∇ (λdiv (p)− g))i,j + αi,jpi,j = 0 (129)

with
αi,j > 0 and |pi,j | = 1 (130)

αi,j = 0 and |pi,j | < 1. (131)

Then we can see that if αi,j = 0, then (∇ (λdiv (p)− g))i,j = 0; which is not an
interesting case. For the case αi,j 6= 0:

αi,jpi,j = (∇ (div (p)− g))i,j (132)

⇒ |αi,j ||pi,j | =
∣∣∣(∇ (div (p)− g))i,j

∣∣∣ ; (133)

however, |αi,j | = αi,j because αi,j > 0 and |pi,j | = 1; then

αi,j =
∣∣∣(∇ (div (p)− g))i,j

∣∣∣ . (134)

Now, if we use a gradient steepest descent method with τ > 0; p0 = 0; n > 0, we get

pn+1
i,j = pni,j + τ

[(
∇
(
div (pn)− g

λ

))
i,j
−
∣∣∣∣(∇(div (pn)− g

λ

))
i,j

∣∣∣∣ pn+1
i,j

]
. (135)

Finally, we get the following iterative formulation:

pn+1
i,j =

pni,j + τ
(
∇
(
div (pn)− g

λ

))
i,j

1 + τ
∣∣∣(∇ (div (pn)− g

λ

))
i,j

∣∣∣ . (136)

Chambolle proves the following important theorem.

Theorem 3 If τ < 1
8 then λdiv (pn) converges to PGλ(g) when n→ +∞.

In pratice, we note that the choice n = 20 is su�cient to reach the wanted convergence.

A.4. Extension

The previous result can be extended to the case of BV −H functional where H is a
Hilbert space such that there exists a linear positive symmetric operator K that de�nes
the following norm over H:

〈f, g〉H = 〈f,Kg〉L2 (137)

Then, if we want to minimize

J(u) +
λ

2
‖f − u‖2H, (138)
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we can use the following modi�ed Chambolle projector:

pn+1
i,j =

pni,j + τ
(
∇
(
K−1div (pn)− g

λ

))
i,j

1 + τ
∣∣∣(∇ (K−1div (pn)− g

λ

))
i,j

∣∣∣ . (139)

And the corresponding convergence theorem is shown below.

Theorem 4 If τ < 1
8‖K−1‖L2

, then 1
λK
−1div (pn) converges to v̂ when n → +∞ and

f − 1
λK
−1div (pn)→ û where û is the minimizer of Eq.(138).

A special case is for K = −∆−1, which corresponds to the Sobolev case H = H−1.
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