# LES BASES DE L'ANALYSE HARMONIQUE

Jérôme Gilles

UCLA

JGS LES BASES DE L'ANALYSE HARMONIQUE

▲ 프 → 프

## **TROISIEME PARTIE**

Ondelettes



프 에 에 프 어

- Rappel sur les limitations de la TFCT
- Familles d'ondelettes et plan temps-fréquence "adaptatif"
- Transformée en ondelette : définition et propriétés
- Principe de l'Analyse Multirésolution (AMR)
- Extensions au cas 2D
- Applications (approximation, débruitage, compression)

프 🖌 🛪 프 🛌

## Rappels ...

#### La TFCT

$$S_f(\nu,\tau) = \int_{-\infty}^{+\infty} w(t-\tau) f(t) e^{-j 2\pi \nu t} dt$$

JGS

#### Pavage rigide du plan temps-fréquence



ヘロン 人間 とくほとく ほとう

₹ 990

## Les limites de la TFCT



## Plan temps-fréquence adaptatif



JGS

## Plan temps-fréquence adaptatif



• 1946, Denis Gabor : TFCT avec fenêtre gaussienne.

프 🖌 🛪 프 🕨

- 1946, Denis Gabor : TFCT avec fenêtre gaussienne.
- 1982, Jean Morlet : applications en géophysique, propose d'échanger la modulation par la dilatation d'une fonction fixe.

- 1946, Denis Gabor : TFCT avec fenêtre gaussienne.
- 1982, Jean Morlet : applications en géophysique, propose d'échanger la modulation par la dilatation d'une fonction fixe.
- 1984, Alex Grossmann et l'équipe de Marseille : lien entre l'ondelette de Morlet et les états cohérents en physique quantique + lien avec la théorie des *frames*.



Denis Gabor : TFCT avec fenêtre gaussienne. ean Morlet : applications en géophysique, propose nger la modulation par la dilatation d'une fonction

lex Grossmann et l'équipe de Marseille : lien entre tte de Morlet et les états cohérents en physique quantique + lien avec la théorie des *frames*.

 1985, Yves Meyer : fait le lien avec l'analyse harmonique et pose tous les fondements mathématiques de la théorie + découverte de l'existence d'une base orthonormée (1986).

- 1946, Denis Gabor : TFCT avec fenêtre gaussienne.
- 1982, Jean Morlet : applications en géophysique, propose d'échanger la modulation par la dilatation d'une fonction fixe.
- 1984, Alex Grossmann et l'équipe de Marseille : lien entre l'ondelette de Morlet et les états cohérents en physique quantique + lien avec la théorie des *frames*.
- 1985, Yves Meyer : fait le lien avec l'analyse harmonique et pose tous les fondements mathématiques de la théorie + découverte de l'existence d'une base orthonormée (1986).
- et ensuite ... : S.Mallat, I.Daubechies, R.Coiffman, A.Cohen, ...

#### Avant avec Fourier

$$\hat{f}(
u) = \int_{-\infty}^{+\infty} f(t) e^{-j2\pi\nu t} dt = \langle f, e^{j2\pi\nu t} \rangle$$

On projete le signal *f* sur la famille de fonctions  $\{e^{j2\pi\nu t}\}$ .

C'est cette famille qui fixe la structure du pavage du plan temps-fréquence.

프 > - 프 > · ·

### Avant avec Fourier

$$\hat{f}(\nu) = \int_{-\infty}^{+\infty} f(t) e^{-j2\pi\nu t} dt = \langle f, e^{j2\pi\nu t} \rangle$$

On projete le signal *f* sur la famille de fonctions  $\{e^{j2\pi\nu t}\}$ .

C'est cette famille qui fixe la structure du pavage du plan temps-fréquence.

Peut-on trouver une autre famille de fonctions qui nous donnerait le pavage souhaité ?

個人 くほん くほん

#### Famille d'ondelettes

On choisit une ondelette "mère"  $\psi(t)$  telle que  $\int_{-\infty}^{\infty} \psi(t) dt = 0$  (moyenne nulle) et  $\|\psi\|_{L^2} = 1$ 

On construit une famille d'ondelettes par dilatation/contraction (facteur  $a \in \mathbb{R}^+$ ) et translation (facteur  $b \in \mathbb{R}$ ) de l'ondelette mère :

$$\psi_{a,b}(t) = \frac{1}{\sqrt{a}}\psi\left(\frac{t-b}{a}\right)$$

 $\mathsf{Rq}: \|\psi_{a,b}\|_{L^2} = 1$ 



## Transformée en ondelettes

#### CWT

$$W_f(a,b) = \langle f, \psi_{a,b} \rangle = \int_{-\infty}^{+\infty} f(t) \frac{1}{\sqrt{a}} \psi^*\left(\frac{t-b}{a}\right) dt$$

Condition d'admissibilité : si  $\mathcal{C}_\psi = \int_0^{+\infty} rac{|\hat\psi(
u)|^2}{
u} d
u < +\infty$  alors

Transformée inverse

$$f(t) = rac{1}{C_\psi} \int_0^{+\infty} \int_{-\infty}^{+\infty} W_f(a,b) rac{1}{\sqrt{a}} \psi\left(rac{t-b}{a}
ight) db rac{da}{a^2}$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

## Premières propriétés

#### Conservation de l'énergie

$$\int_{-\infty}^{+\infty} |f(t)|^2 dt = \frac{1}{C_{\psi}} \int_0^{+\infty} \int_{-\infty}^{+\infty} |W_f(a,b)|^2 db \frac{da}{a^2}$$

#### La CWT est un filtrage !

Si l'on écrit

$$\bar{\psi}_{a}(t) = \frac{1}{\sqrt{a}}\psi^{*}\left(\frac{-t}{a}\right)$$

alors

$$W_f(a,b) = f \star \bar{\psi}_a(b)$$

 $\mathsf{Rq}:\widehat{\bar{\psi}_a}(\nu)=\sqrt{a}\widehat{\psi^*}(a\nu).$ 

ヘロン ヘアン ヘビン ヘビン

3

La transformée en ondelette est un filtrage du type passe-bande !



Conséquence : on ne peut pas avoir la fréquence nulle  $\longrightarrow$  complémentarité obtenue avec la **fonction d'échelle**.

Hyp : on connait  $W_f(a, b)$  pour  $a < a_0 \longrightarrow$  on a besoin de connaître l'information pour  $a \ge a_0$  pour reconstruire parfaitement *f*. Pour cela on utilise la fonction d'échelle qui est définie à partir de l'ondelette utilisée par le biais de leurs TF :

$$|\hat{\phi}(\nu)|^2 = \int_{\nu}^{+\infty} |\hat{\psi}(\xi)|^2 rac{d\xi}{\xi}$$

Ici aussi on peut écrire  $\bar{\phi}_a(t) = \frac{1}{\sqrt{a}}\phi^*\left(\frac{-t}{a}\right)$  et l'information manquante peut être vue comme un filtrage passe-bas :

$$L_f(a,b) = \left\langle f(t), \frac{1}{\sqrt{a}}\phi\left(\frac{t-u}{a}\right) \right\rangle = f \star \bar{\phi}_a(u)$$

### Fonction d'échelle 2/2



La reconstruction s'obtient alors par :

$$f(t) = \frac{1}{C_{\psi}} \int_{0}^{a_0} W_f(a, .) \star \psi_a(t) \frac{da}{a^2} + \frac{1}{C_{\psi}a_0} L_f(a, .) \star \phi_{a_0}(t)$$

글 에 에 글 어 !!

э

## Pavage de plan temps-fréquence



ヨトーヨ

• Signaux échantillonnés ( $pas = N^{-1}$ ).



・ 同 ト ・ ヨ ト ・ ヨ ト …

2

- Signaux échantillonnés ( $pas = N^{-1}$ ).
- Echelles discrètes :  $a = (2^{1/\nu})^j$  ( $\nu$  échelles par octave  $[2^j, 2^{j+1}]$ ).

通 とく ヨ とく ヨ とう

æ

- Signaux échantillonnés ( $pas = N^{-1}$ ).
- Echelles discrètes :  $a = (2^{1/\nu})^j$  ( $\nu$  échelles par octave  $[2^j, 2^{j+1}]$ ).
- L'ondelette dilatée est donc définie par  $(d = 2^{1/\nu})$  $\psi_j[n] = \frac{1}{\sqrt{d^j}} \psi\left(\frac{n}{d^j}\right).$

個 とく ヨ とく ヨ とう

- Signaux échantillonnés ( $pas = N^{-1}$ ).
- Echelles discrètes :  $a = (2^{1/\nu})^j$  ( $\nu$  échelles par octave  $[2^j, 2^{j+1}]$ ).
- L'ondelette dilatée est donc définie par  $(d = 2^{1/\nu})$  $\psi_j[n] = \frac{1}{\sqrt{d^j}} \psi\left(\frac{n}{d^j}\right).$
- Transformée discrète :  $W_f[n, d^j] = \sum_{m=0}^{N-1} f[m]\psi_j^*[m-n] = f \oplus \overline{\psi}_j[n]$  (périodisation du signal).

回とくほとくほとし

- Signaux échantillonnés ( $pas = N^{-1}$ ).
- Echelles discrètes :  $a = (2^{1/\nu})^j$  ( $\nu$  échelles par octave  $[2^j, 2^{j+1}]$ ).
- L'ondelette dilatée est donc définie par  $(d = 2^{1/\nu})$  $\psi_j[n] = \frac{1}{\sqrt{d^j}} \psi\left(\frac{n}{d^j}\right).$
- Transformée discrète :  $W_f[n, d^j] = \sum_{m=0}^{N-1} f[m] \psi_j^*[m-n] = f \otimes \overline{\psi}_j[n]$  (périodisation du signal).
- Fonction d'échelle :  $\phi_J[n] = \frac{1}{\sqrt{d^J}} \phi\left(\frac{n}{d^J}\right)$  où  $a_0 = d^J$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

- Signaux échantillonnés ( $pas = N^{-1}$ ).
- Echelles discrètes :  $a = (2^{1/\nu})^j$  ( $\nu$  échelles par octave  $[2^j, 2^{j+1}]$ ).
- L'ondelette dilatée est donc définie par  $(d = 2^{1/\nu})$  $\psi_j[n] = \frac{1}{\sqrt{d^j}} \psi\left(\frac{n}{d^j}\right).$
- Transformée discrète :  $W_f[n, d^j] = \sum_{m=0}^{N-1} f[m] \psi_j^*[m-n] = f \otimes \overline{\psi}_j[n]$  (périodisation du signal).
- Fonction d'échelle :  $\phi_J[n] = \frac{1}{\sqrt{d^J}} \phi\left(\frac{n}{d^J}\right)$  où  $a_0 = d^J$ .
- BF s'obtiennent par :  $L_f[n, d^J] = \sum_{m=0}^{N-1} f[m] \phi_J^*[m-n] = f \circledast \overline{\phi}_J[n]$

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

## Quelques exemples 1/4

Même signaux de test que le cours sur Fourier :



### Quelques exemples 2/4



JGS

▲□▶▲□▶▲□▶▲□▶ □ のQの

### Quelques exemples 3/4



JGS

イロト イポト イヨト イヨト

э

# Quelques exemples 4/4



JGS

イロト 不得 とくほ とくほとう

э



#### Bases orthogonales

 $\{e_n\}$  est une base orthogonale si  $\langle e_n, e_m \rangle = 0$  si  $m \neq n$ .

< ∃→



#### Trame (*frame*)

 $\begin{array}{l} \{e_n\} \text{ est une trame si } \exists A, B > 0 \text{ telles que} \\ A \|f\|_{L^2}^2 \leqslant \sum_{n \in \Gamma} |\langle f, e_n \rangle|^2 \leqslant B \|f\|_{L^2}^2 \Rightarrow \text{ redondance.} \\ \text{La reconstruction se fait à l'aide de l'opérateur pseudo-inverse} \\ \text{qui utilise une trame dual } \{\tilde{e}_n\}. \\ \text{Si } A = B \text{ on a alors une trame ajustée } (tight frame) \\ \text{Si } A = B = 1 \text{ on a alors une base orthonormée.} \end{array}$ 





#### Base biorthogonale

Soit deux familles d'ondelettes  $\{\psi_{j,n}\}$  et  $\{\tilde{\psi}_{j,n}\}$ , elles sont dites biorthogonales si

$$\langle \psi_{j,n}, \tilde{\psi}_{j',n'} \rangle = \delta[n-n']\delta[j-j'] \qquad \forall (j,j',n,n') \in \mathbb{Z}^4$$

### Un cas particulier : le cas dyadique

Les échelles sont discrétisée en prennant  $a = 2^{j}$ .

$$\left\{\psi_{j,n}(t) = \frac{1}{\sqrt{2^{j}}}\psi\left(\frac{t-2^{j}n}{2^{j}}\right)\right\}_{(j,n)\in\mathbb{Z}^{2}}$$

Plusieurs avantages :

- Possibilité de construire "facilement" des bases orthogonales ayant certaines propriétés (régularité, compacité du support, ...).
- Lien avec la théorie des filtres miroirs conjugués.
- Algorithme rapide en utilisant des bancs de filtres sous-échantillonnés.
- Construction aisée d'une analyse multirésolution.
#### AMR

• 
$$\forall (j,k) \in \mathbb{Z}^2, f(t) \in V_j \Leftrightarrow f(t-2^jk) \in V_j$$

- $\forall j \in \mathbb{Z}, V_{j+1} \subset V_j$
- $\forall j \in \mathbb{Z}, f(t) \in V_j \Leftrightarrow f\left(\frac{t}{2}\right) \in V_{j+1}$
- $\lim_{j \to +\infty} V_j = \bigcap_{j=-\infty}^{+\infty} V_j = \{0\}$
- $\lim_{j\to-\infty} V_j = \bigcup_{j=-\infty}^{+\infty} V_j = L^2(\mathbb{R})$
- $\exists \{\theta(t-n)\}_{n \in \mathbb{Z}}$  base de Riesz de  $V_0$ .



> < 臣 > < 臣 >

#### AMR

• 
$$\forall (j,k) \in \mathbb{Z}^2, f(t) \in V_j \Leftrightarrow f(t-2^jk) \in V_j$$

- $\forall j \in \mathbb{Z}, V_{j+1} \subset V_j$
- $\forall j \in \mathbb{Z}, f(t) \in V_j \Leftrightarrow f\left(\frac{t}{2}\right) \in V_{j+1}$
- $\lim_{j\to+\infty} V_j = \bigcap_{j=-\infty}^{+\infty} V_j = \{0\}$
- $\lim_{j\to-\infty} V_j = \bigcup_{j=-\infty}^{+\infty} V_j = L^2(\mathbb{R})$
- ∃{θ(t − n)}<sub>n∈ℤ</sub> base de Riesz de V<sub>0</sub>.



直 とう ゆう く いくし

#### AMR

• 
$$\forall (j,k) \in \mathbb{Z}^2, f(t) \in V_j \Leftrightarrow f(t-2^jk) \in V_j$$

- $\forall j \in \mathbb{Z}, V_{j+1} \subset V_j$
- $\forall j \in \mathbb{Z}, f(t) \in V_j \Leftrightarrow f\left(\frac{t}{2}\right) \in V_{j+1}$
- $\lim_{j\to+\infty} V_j = \bigcap_{j=-\infty}^{+\infty} V_j = \{0\}$
- $\lim_{j\to-\infty} V_j = \bigcup_{j=-\infty}^{+\infty} V_j = L^2(\mathbb{R})$
- ∃{θ(t − n)}<sub>n∈ℤ</sub> base de Riesz de V<sub>0</sub>.



(문)(문)

#### AMR

• 
$$\forall (j,k) \in \mathbb{Z}^2, f(t) \in V_j \Leftrightarrow f(t-2^jk) \in V_j$$

- $\forall j \in \mathbb{Z}, V_{j+1} \subset V_j$
- $\forall j \in \mathbb{Z}, f(t) \in V_j \Leftrightarrow f\left(\frac{t}{2}\right) \in V_{j+1}$
- $\lim_{j\to+\infty} V_j = \bigcap_{j=-\infty}^{+\infty} V_j = \{0\}$
- $\lim_{j\to-\infty} V_j = \bigcup_{j=-\infty}^{+\infty} V_j = L^2(\mathbb{R})$
- ∃{θ(t − n)}<sub>n∈ℤ</sub> base de Riesz de V<sub>0</sub>.



(문)(문)

#### AMR

• 
$$\forall (j,k) \in \mathbb{Z}^2, f(t) \in V_j \Leftrightarrow f(t-2^jk) \in V_j$$

• 
$$\forall j \in \mathbb{Z}, V_{j+1} \subset V_j$$

• 
$$\forall j \in \mathbb{Z}, f(t) \in V_j \Leftrightarrow f\left(\frac{t}{2}\right) \in V_{j+1}$$

• 
$$\lim_{j \to +\infty} V_j = \bigcap_{j=-\infty}^{+\infty} V_j = \{0\}$$

• 
$$\lim_{j\to-\infty} V_j = \bigcup_{j=-\infty}^{+\infty} V_j = L^2(\mathbb{R})$$

• 
$$\exists \{\theta(t-n)\}_{n \in \mathbb{Z}}$$
 base de Riesz de  $V_0$ .



▶ < ≣ ▶

2

## AMR et ondelettes

 $V_j \Leftrightarrow$  basses résolutions  $\Leftrightarrow a_j[n] = \langle f, \phi_{j,n} \rangle$  $W_j \Leftrightarrow$  hautes résolutions (détails)  $\Leftrightarrow d_j[n] = \langle f, \psi_{j,n} \rangle$ 



通りくほりくほう

### AMR et ondelettes

 $V_j \Leftrightarrow$  basses résolutions  $\Leftrightarrow a_j[n] = \langle f, \phi_{j,n} \rangle$  $W_j \Leftrightarrow$  hautes résolutions (détails)  $\Leftrightarrow d_j[n] = \langle f, \psi_{j,n} \rangle$ 

#### Théorème de Mallat (transformée récursive)

Numériquement, on peut construire des filtres numériques h et g correspondant respectivement à  $\phi$  et  $\psi$  tels que

$$a_{j+1}[p] = \sum_{n=-\infty}^{+\infty} h[n-2p]a_j[n]$$

$$d_{j+1}[p] = \sum_{n=-\infty}^{+\infty} g[n-2p]a_j[n]$$

프 🖌 🛪 프 🕨

### Exemple de filtres



◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

# Transformée en ondelettes rapide



Reconstruction



JGS

ヨトーヨ

## Exemples (sans sous-échantillonnage)



JGS

< < >> < </>

(人) (日本) (日本)

э

# Exemples (sans sous-échantillonnage)



JGS

LES BASES DE L'ANALYSE HARMONIQUE

ъ

# Exemples (sans sous-échantillonnage)



JGS

< ∃→

# Extension en 2D

#### $\Rightarrow$ 2 variables $\Rightarrow \phi(x, y)$ et $\psi(x, y)$ .



▶ ★ 臣 ▶ ★ 臣 ▶ …

2

# Extension en 2D

#### $\Rightarrow$ 2 variables $\Rightarrow \phi(x, y)$ et $\psi(x, y)$ .

#### Deux stratégies

- Construire directement des fonctions à deux variables (ex : filtres de Gabor).
- Utiliser des filtres séparables via des transformées 1D.

く 同 と く ヨ と く ヨ と

## Extension en 2D : Construction directe

. . .

Ex : ondelettes de Gabor, ondelette de Morlet, ondelette de Cauchy,



# Extension en 2D : par transformées séparables

Idée : on filtre d'abord dans une direction puis dans l'autre grace aux filtres 1D.

 $\Rightarrow$  Extension directe de l'algorithme de Mallat.



## Extension en 2D : par transformées séparables





▶ ★ 臣 ▶

æ



JGS

æ



JGS

ヘロト 人間 とくほとくほとう

ъ



▶ ★ 臣 ▶ …

ъ

### Interprétation dans le domaine de Fourier



# La 2D : un monde particulier !

Ondelettes séparables  $\Rightarrow$  analyse suivant les axes.

Dans une image l'information peut suivre n'importe quelle direction.



On peut construire des trames adaptées à la notion de direction, voire à la géométrie même de l'image.



- ∢ ⊒ →

On peut construire des trames adaptées à la notion de direction, voire à la géométrie même de l'image.



 $\Rightarrow$  ridgelettes, curvelettes, contourlettes, edgelettes, bandelettes,...



JGS

- Pyramide Laplacienne pour l'aspect multirésolution
- Filtres directionnels basés sur les filtres en quinqux

## Contourlettes



ъ

æ

- Débruitage
- Compression
- . . .



▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

æ

# Chaque coefficient apporte son lot plus ou moins important d'information



#### Original

# Chaque coefficient apporte son lot plus ou moins important d'information



JGS

Original

#### Coefficients d'ondelette (Daubechies)

LES BASES DE L'ANALYSE HARMONIQUE

# Chaque coefficient apporte son lot plus ou moins important d'information



JGS

Original

#### Reconstruction sans la HR

#### Seuillage doux (Soft thresholding)

Soit un seuil T

$$HT(x,T) = \begin{cases} 0 & \text{si} & |x| \leq T\\ sign(x)(|x|-T) & \text{si} & |x| > T \end{cases}$$

#### Seuillage dur (Hard thresholding)

Soit un seuil T

$$HT(x,T) = \begin{cases} 0 & \text{si} & |x| \leq T \\ x & \text{si} & |x| > T \end{cases}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

# Exemple de seuillage doux



Original

*T* = 50





T = 1000

*T* = 100

JGS

LES BASES DE L'ANALYSE HARMONIQUE

## Exemple de seuillage dur



Original







*T* = 1000

*T* = 100

JGS

LES BASES DE L'ANALYSE HARMONIQUE



L'énergie du bruit est répartie au travers de toutes les échelles (coefficients de faibles amplitudes).

 $\Rightarrow$  Utilisation du seuillage pour éliminer les coefficients dûs au bruit.

Bruit gaussien  $\Rightarrow$  seuillage doux optimal en théorie mais le seuillage dur donne de meilleurs résultats visuellement.

伺 とく ヨ とく ヨ と




Original

Version bruitée



Original



Seuillage doux sur coef d'ondelette



Original



Seuillage dur sur coef d'ondelette



Original



Seuillage doux sur coef contourlette



Original



Seuillage dur sur coef contourlette





프 > + 프 > -

# Compression : JPEG2000



### Compression : JPEG2000





JPEG 1 :86

JPEG 1 :41





### JPEG2000 1 :86

#### LES BASES DE L'ANALYSE HARMONIQUE

JGS

### Le monde merveilleux des ondelettes ....

### Du point de vue théorique

- D'autres extensions : paquets d'ondelettes, ondelettes rationnelles,
  ...
- Outil pour l'analyse fonctionnelle (espace de Besov, espace de Triebel-Lizorkin), ...
- Lien avec la théorie de l'approximation, ...
- Outil pour la résolution des équations différentielles, ...

프 🖌 🛪 프 🛌

### Le monde merveilleux des ondelettes ....

### Du point de vue théorique

- D'autres extensions : paquets d'ondelettes, ondelettes rationnelles,
- Outil pour l'analyse fonctionnelle (espace de Besov, espace de Triebel-Lizorkin), ...
- Lien avec la théorie de l'approximation, ...
- Outil pour la résolution des équations différentielles, ...

### Du point de vue applicatif

...

- Compression de vidéo (MPEG4, ...)
- Analyse de signaux sismiques, acoustiques, ....
- Traitement d'images : analyse de textures, modélisation, ...

・ロト ・ 理 ト ・ ヨ ト ・

3

- S.Mallat, "Une exploration des signaux en ondelettes"
- M.Vetterli, "Wavelets and subband coding" (http://infoscience.epfl.ch/record/33934/files/ VetterliKovacevic95\_Manuscript.pdf?version = 1)
- Y.Meyer, "Ondelettes et opérateurs" (3 tomes)
- Wavelet Digest : http : //www.wavelet.org

A E > A E >