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Abstract. A novel approach is presented in this paper to improve im-
ages which are altered by atmospheric turbulence. Two new algorithms
are presented based on two combinations of a blind deconvolution block,
an elastic registration block and a temporal filter block. The algorithms
are tested on real images acquired in the desert in New Mexico by the
NATO RTG40 group.

1 Introduction

The image atmospheric turbulence distortion phenomenon remains a hard prob-
lem specially for horizontal ground imagers. Many works were done for astro-
nomical images but the models used are not adapted for ground imaging systems.
If these effects do not really affect an human observer in the case of weak tur-
bulence, it can be very awkward for an automatic target recognition algorithm
because the objects may be very different from the shapes learned by the al-
gorithms. Some examples of different levels of turbulence are given in figure 1.
We can clearly see that the distortion affect the image comprehension (look at
the letters on the right image). For a few years, a NATO Task Group (RTG40)
focus its work on the validation of atmospheric turbulence models for infrared
passive and active imaging systems. In order to evaluate the models, an acqui-
sition campaign was done in the desert in New Mexico where different levels
of turbulence were accessible. More generally the image distortion appears for
different phenomena (for example underwater imaging systems are subject to
the scattering effect which can be viewed as an image distortion).

In this paper, we adress some work in the field of image distortion restoration.
The technique we propose modelize the alteration by a combination of image
warping and blurring. Then we try to inverse the process by blind deconvolution
and image registration.
First, in section 2 we begin to describe the related phenomena and propose to
use the model of Frakes et al. [1, 2]. In section 3, we remind the temporal filters
which will be used in the global restoration algorithm. In section 4, we describe
the blind deconvolution algorithm we use which comes from the work of Chan
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Fig. 1. Example of images acquired by passive imagers during the NATO RTG40
campaign

et al. (see [3, 4]). In section 5, we give details about the image registration which
is based on the diffeomorphism approach described in the work of Younès ([5,
6]) and Beg ([7]). Then, we present the architecture of the image distortion
restoration algorithm in section 6 and section 7 show many experiments on
images on which turbulence is present. Then we will conclude and give some
perspectives of our work.

2 Turbulence image distortion effect

If many works were done about the turbulence effect on astronomical images, the
case of horizontal turbulence for ground to ground imagers is less studied. In [8],
the authors try to use local filters (Wiener filtering, laplacian regularization,. . .)
but the local properties are obtained by a block partitionning of the image. The
main drawback is that some block effects appear in the restored images. A first
report is that no turbulence models exist for horizontal turbulence unlike for
vertical turbulence. Many efforts are currently done around the world to get a
good model which will be representative of the real effects. For example, the
NATO Research Task Ground-40 (RTG40) deals with this kind of problem for
active imaging systems.
If the modelization of the physical phenomenon is an important topic, the ques-
tion of image (which is altered by turbulence) restoration is also an important
question because it acts directly on the observation performances. The work
presented in this paper is a part of the work we did in the RTG40 on image
restoration.

As no specific models are available to use for image restoration, we decided
to use the general model proposed by Frakes et al. [1, 2]. The authors propose
to modelize the turbulence phenomenon by using two “basic” operators:

Iobs = D(H(Iideal)) + b (1)

where Iobs is the observed image, H is a kernel of blur and D is an operator
which represents the geometric distortions operator caused by turbulence. In
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the rest of the paper, we will not take care about the noise b because it can
be considerably reduced by some simple temporal filtering (see section 3). In
this paper, we explore a new way to retrieve a restored version Irest, of an
ideal image Iideal from the observed data Iobs by using some operators which
will approximate H−1 and D−1. We choose a blind deconvolution technique to
approximate H−1 and a registration algorithm for D−1. Before examining these
operators, we recall the temporal filters commonly used in the literature which
will be used on the global restoration algorithm in the end of the paper.

3 Temporal filters

In [9, 10], temporal filters are used to restore sequences acquired by the imaging
systems. We write {In}06n6N a sequence, where N is the number of frames in
the sequence. We assume that images are size of I × J and the coordinate of
one pixel is written (i, j) (then the image domain is Ω = J0; IK × J0; JK). The
temporal mean and temporal median filters are defined respectively by

∀(i, j) ∈ Ω Imean(i, j) =
1
N

N∑
n=0

In(i, j) (2)

and

Imed(i, j) = MED((In(i, j))06n6N ) we assume that N is odd (3)

We recall that this filter consists of rearranging the vector

(I0(i, j), I1(i, j), . . . , IN−1(i, j)) (4)

in an increasing way, then we get the vector(
Ĩ0(i, j), Ĩ1(i, j), . . . , ĨN−1(i, j)

)
(5)

where Ĩn(i, j) 6 Ĩn+1(i, j). As N is assumed to be odd, the median value is
ĨN−1

2
(i, j).

In [9], the author prove by using a statistical argument that the median filter
is a better choice than the mean filter and gives better results. An example
of result obtained at the output of the median filter applied on a turbulenced
sequence is given on figure 2. The improvement that temporal filters gave are
interesting but many experiments show that geometric distortions remain in the
sequence. This kind of filters could be sufficient for an human observer but in
the case of higher level of turbulence, an automatic target recognition (ATR)
algorithm needs higher restoration performance rates.
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Fig. 2. Result obtained by temporal median filtering.

4 Blind deconvolution

As we mentioned in section 2, we need to deconvolve images to decrease the
blurring effect of the atmosphere. We choose a blind deconvolution approach
because in the case of atmospheric turbulence we never know the kernel of blur
and the advantage of blind deconvolution techniques is that we don’t need to
know any a priori model about the kernel of blur. The algorithm estimates
iteratively the deconvolved image and the kernel of blur.
In this section we describe the blind deconvolution algorithm we choose which
is based on the work of Chan et al. [3, 4].
If we denote Iblu the blurred image and H the kernel of blur then it is assumed
that

Iblu = H ∗ Iideal + b (6)

where b is an additive noise and ∗ is the convolution product. The algorithm of
Chan et al., which estimates Iideal and H, is based on an iterative method. The
authors assume that Iideal and H are function taken in a space V defined by

V =
{
u ∈ L2(Ω) / ‖u‖2 + |u|TV 6 c

}
(7)

where c is a constant and the semi-norm |u|TV , ‖∇u‖1. Then the authors
propose to minimize the following functional to find Iideal and H:

E(Iideal, H) =
1
2
‖H ∗ Iideal − Iblu‖22 + α1

∫
Ω

|∇Iideal|dx+ α2

∫
Ω

|∇H|dx (8)

Then, if we apply the Gâteaux derivative we obtain (see [3, 4] for details), ∀x ∈ Ω

∂E

∂H
(x) = Iideal(−x) ∗ (Iideal ∗H − Iblu)(x)− α2∇ ·

(
∇H(x)
|∇H|

)
= 0, (9)

∂E

∂Iideal
(x) = H(−x) ∗ (H ∗ Iideal − Iblu)(x)− α1∇ ·

(
∇Iideal(x)
|∇Iideal|

)
= 0. (10)



Atmospheric turbulence restoration 5

The authors suggest to use an iterative fixed-point method to solve this system
of equations and they prove that an equivalent matrix formulation exists. These
matrices are Toeplitz plus Hankel matrices and this property permits us to use
an efficient diagonalization technique based on a discrete cosine transform.
Figure 3 shows the results we get when we apply this algorithm on the top-
right image (this image is a simulated blurred version of the top-left image by
a gaussian kernel). The bottom row gives the deconvolved image (on bottom-
left) and the estimated kernel of blur (on bottom-right). We can see that the
algorithm works well and gives a good estimation of the kernel.

initial image blurred image

deconvolved image kernel of blur

Fig. 3. Results of the blind deconvolution algorithm with α1 = 10−5 and α2 = 10−3.

5 Image registration by diffeomorphism

In this section, we adress the problem of the image distortions correction. We
assume that image distortions are equivalent to geometric distortions and we
choose to modelize it by a warping operator denoted φ. Assume we want to
warp an image I0 to an image I1, (see figure 4, where I0 and I1 are relatively
close), a general energy formulation can be written

E(φ) = D(Ĩ0, I1) +R(φ) (11)

where Ĩ0 = I0 ◦ φ is the warped version of I0 to I1, D represents a similarity
measure between Ĩ0 and I1 and R is a regularization term to avoid the indesir-
able behaviour of φ. Now the question is how to choose D and R?
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Fig. 4. Principle of image warping by diffeomorphism.

Many models exist in the literature, statistical models ([11]), physical models
([12]), . . . In this paper we choose a warping technique based on diffeomorphisms
which uses concepts commonly used in fluid mechanics and applied in medical
image processing applications [5–7].
First, we recall the definition of a diffeomorphism: given two manifolds M and
N , a bijective map φ from M to N is called a diffeomorphism if both φ and
φ−1 are differentiable. In [7, 5, 6], the authors prove that it exists a space V of
velocity fields defined by

V =
{
v ∈ H2(Ω,R2) ∩ L2(Ω,R2)

}
(12)

embedded by the following inner product

∀f, g ∈ V 〈f, g〉V , 〈Lf, Lg〉L2 (13)

where L = −α∆ + γ is the Cauchy-Navier differential operator (α and γ are
parameters). Then for each time t it exists a velocity field vt ∈ V such that

dφt
dt

= vt(φt). (14)

The authors suggest to find this velocity field by minimizing the following energy
term

v̂ = arg min
v∈V

E(v), (15)

= arg min
v∈V

1
2

∫ T

0

‖vt‖2V dt+
C

2
‖I0 ◦ φvT,0 − IT ‖2L2 . (16)

Then they calculate the corresponding Euler-Lagrange equation and use the Neu-
mann’s limits boundary condition to solve this problem (see [7] for the details).
They also show that the inner product over V can be easily calculated by filter-
ing in the Fourier domain. All numerical aspects and the implementation details
of this algorithm by using a gradient steepest descent method can be found in [7].

In figure 5, we can see the evolution during the iteration time of the algo-
rithm on simulated distortions (we use the original image as reference for the
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diffeomorphism). We can see that the algorithm works very well, the geometric
distortions are removed.
We also study the influence of the parameters (see [13]) α and γ on different
basic distortions and we can conclude that we must choose these parameters
under the following constraints: (α, γ) ∈ [0.01, 0.3]× [0.1, 1] with α < γ.

Initial Step 10 Step 80

Fig. 5. Results of warping algorithm by diffeomorphism.

6 Image distortion restoration

In this section, we adress the global image alteration restoration problem as de-
fined in the turbulence case in section 2. In this section, we assume that we have
a sequence of images of the observed scene {In}06n6N where N is the number
of frames in the sequence. As we mentioned previously, we will use the blind
deconvolution algorithm to evaluate H−1 and the diffeomorphism registration
technique to evaluate D−1. Two iterative methods can be retained to get the re-
stored images. The first one, we call it FRD algorithm, is based on the theoretical
model described in section 2 where Irest = D−1(H−1(Iobs)) (Irest is the restored
image). The second, we call DFR algorithm, is based on the practical approach
proposed by Frakes et al. [2, 1] which corresponds to Irest = H−1(D−1(Iobs)).
Before to detail these algorithms, an important question arises: which reference
can we use for the diffeomorphism?

As we see in section 3 the temporal filters could be some good candidates.
So we decided to use these temporal filters to get a reference image as input of
the diffeomorphism registration technique.
The principle of the FRD algorithm is shown in figure 6. The input sequence
is used by the temporal filter to generate a first reference Îk for k = 0. The
input sequence is then warped on this reference. This step gives us a registrated
sequence (Îk). Then we can get a new reference image from (Îk) and iterate the
process ( 1©). After K iterations, we apply the blind deconvolution algorithm on
the last reference image to get the final result Irest.
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The DFR algorithm is summarized in figure 7. The main difference with the
FRD algorithm is that the blind deconvolution algorithm is first applied on each
frame of the input sequence. And the final result is simply the last reference
image ÎK .

Fig. 6. Global restoration algorithm based on the theoretic model (FRD algorithm).

Fig. 7. Global restoration algorithm based on the practical approach of Frakes (DFR
algorithm).

7 Experiments

In this section, we present some results we get by testing the FRD and DFR
algorithms. We use a sequence acquired by a passive imager during the NATO
RTG40’s campaign in the desert in New Mexico. Some frames of the test sequence
are shown in fig.8. Then, we apply the FRD and DFR algorithms on these
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sequences (we use only one iteration, K = 1, α1 = 2.10−2, α2 = 1, α = 0.01, γ =
0.7). The results and the temporal median filter output are shown on fig.9. We
can clearly see that the proposed algorithms give the best results, the distortion
are removed by the registration and the blind deconvolution permits to retrieve
some high frequencies of the images (the edges are sharpened, the white dots are
more observable and the hexagonal pattern due to the fiber network of the sensor
is also restored). The DFR algorithm seems to have a better accuracy than the
FRD algorithm (the contrasts between the objects are better enhanced).

Fig. 8. Example of frames extracted from the real test sequences.

(a) (b) (c)

Fig. 9. Results on passive imagery: (a) temporal median image output, (b) FRD result,
(c) DFR result.

8 Conclusion - Futur work

In this paper, we present a novel approach to restore the atmospheric turbulence
effect on video sequence. Two combinations of an elastic image registration algo-
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rithm and blind deconvolution are used in concordance with the physical model
proposed by Frakes et al. [2, 1]. We perform our algorithms to real data acquired
during the NATO RTG40 campaign. Our algorithm outperfom the results we
get by commonly used temporal filters, the object’s geometry is regularized and
some high frequencies are retrieved. These characteristics improve the visual
identification performance rates and will be necessary for an automatic target
recognition algorithm.
We plan to explore the capabilities of the two algorithms in future work. As
mentioned in section 6, the process can be iterated then we plan to test the
influence of all parameters (α1, α2, α, γ,K) on many sequences (in passive and
active imaging). This work will be done in a future paper. Another theoretically
interesting way of research could be unify the deconvolution process inside the
registration algorithm and then create only one algorithm which could be more
fast.
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Descartes Paris V (2000)
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