

く 同 と く ヨ と く ヨ と

Modélisation d'images par espace BV et espaces de fonctions oscillantes

Jérôme Gilles DGA-IP/ASC/EORD, CMLA/ENS Cachan

gilles.research@free.fr

http://jerome.gilles91.free.fr

De nombreuses applications nécessitent l'analyse des textures. Défense \to différents types d'imagerie \to différents types de textures

De nombreuses applications nécessitent l'analyse des textures. Défense \to différents types d'imagerie \to différents types de textures

Journée modélisation mathématique des textures - GdR ISIS

De nombreuses applications nécessitent l'analyse des textures. Défense \to différents types d'imagerie \to différents types de textures

Journée modélisation mathématique des textures - GdR ISIS

Journée modélisation mathématique des textures - GdR ISIS Modélisation par espaces de fonctions

ヘロン 人間 とくほど くほとう

æ

ヘロン ヘアン ヘビン ヘビン

ъ

Journée modélisation mathématique des textures - GdR ISIS Modélisation par espaces de fonctions

프 🕨 🗉 프

- Difficulté de donner une définition unique de la texture,
- De nombreux points de vue:
 - Approches fréquentielles,
 - Approches statistiques,
 - Notion de "texton",
 - Approches analyse fonctionnelle

 \rightarrow point de vue de l'analyse fonctionnelle, les textures étant modélisées comme des fonctions oscillantes.

Quels espaces de fonctions choisir? Comment décrit-on un modèle de texture?

個 とくき とくきと

Soit une image *f* définie sur \mathbb{R}^n ou $\Omega = [0; 1]^n$ (puis périodisation de *f*).

Soit $X(\mathbb{R}^n)$ ou $X(\Omega)$ des espaces de fonctions.

<u>But</u>: modéliser f = u + v où

- u sera la composante régulière ou "géometrique" (objets,...),
- v la composante "oscillante" (textures ou bruit)

▲ 伊 ▶ ▲ 王 ▶ ▲ 王 ▶ ● の Q @

On cherche $f \in X_1 + X_2$ tel que f = u + v avec $u \in X_1$ et $v \in X_2$.

La décomposition étant obtenue par le problème de minimisation suivant:

$$(\hat{u}, \hat{v}) = \inf_{(u,v) \in X_1 \times X_2} \{F_1(u) + \lambda F_2(v), f = u + v\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

où $F_1, F_2 > 0$ et X_1, X_2 sont des espaces de fonctions ou distributions

tels que
$$F_1(u) < \infty$$
 et $F_2(v) < \infty$ ssi $(u, v) \in X_1 \times X_2$.

Comment choisir les espaces X_1 et X_2 ?

Une bonne idée est de prendre X_1, X_2 tels que

•
$$F_1(u) \ll F_2(u)$$

•
$$F_2(v) \ll F_1(v)$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

3

But initial: débruitage, restauration

$$(\hat{u}, \hat{v}) = \inf_{(u,v)\in BV\times L^2} \{J(u) + \lambda \|v\|_{L^2}^2, f = u + v\}$$

où $J(u) = |u|_{BV} = \int |Du|$ (semi-norme sur *BV* l'espace des fonctions à variations bornées).

 \Rightarrow pas adapté pour capturer correctement les fonctions oscillantes.

(雪) (ヨ) (ヨ)

ROF: propriétés

Soit la fonction $g_N(x) = \chi(x) \cos(Nx_1)$ où $\chi(x)$ est la fonction indicatrice sur un domaine fini, *N* la fréquence et x_1 une direction dans l'image. Alors:

$$\|g_N\|_{L^2} \approx \frac{1}{\sqrt{2}} \|\chi\|_{L^2}$$
$$J(g_N) = \frac{2N}{\pi} \|\chi\|_{L^1} + \epsilon_N$$

La composante v ne dépend pas de N, elle se comporte de la même façon quelque soit la texture.

(雪) (ヨ) (ヨ)

Autres défauts:

- Le modèle n'a aucun sens dans le cas continu si l'on a la présence de bruit blanc gaussien car la norme L² est infinie (⇒ utilisation d'espaces à indices de régularité < 0),
- Phénomène de "perte d'intensité": si $f = \alpha \chi_D$ alors $\forall R \ge \frac{1}{\lambda \alpha}$ (*R* le rayon du disque *D*) on a

$$u = \left(\alpha - \frac{1}{\lambda R}\right) \chi_D$$
$$v = \frac{1}{\lambda R} \chi_D$$

Pb "général": si q > 1, $\forall p \ge 1$ alors $J(u) + \lambda ||f - u||_{L^p}^q$ a ce défaut.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Idée: prendre des normes plus faibles de fonctions généralisées pour modéliser v.

Trois espaces retenus par Meyer:

•
$$E = \dot{B}^{\infty}_{-1,\infty}$$
,
• $F = \operatorname{div} (BMO \times BMO)$,
• $G = \operatorname{div} (L^{\infty} \times L^{\infty})$

Autre candidat: $W^{s,p}$ avec s < 2.

通 とう ほうとう ほうとう

Les espaces E et F

- $E = \dot{B}^{\infty}_{-1,\infty}$: espace de Besov \rightarrow Travaux de A.Haddad, Y.Meyer.
- $F = \operatorname{div} (BMO \times BMO)$: $v \in F$ si $\exists g = (g_1, g_2) \in BMO \times BMO$ tel que $v = \operatorname{div} g$ et

$$\|v\|_{F} = \inf_{g} \{\|g_{1}\|_{BMO} + \|g_{2}\|_{BMO} \}$$

où *BMO* (Bounded Mean Oscillation) sont les espaces John et Nirenberg avec

$$\|f\|_{BMO} = \sup_{Q} \frac{1}{|Q|} \int_{Q} |f - f_Q| dx$$
 où $f_Q = \frac{1}{|Q|} \int_{Q} f(x) dx$

 \rightarrow Travaux de J.B.Garnett, P.Jones, T.M.Le, L.Vese (utilisation de $W^{s,\rho}$, $\dot{B}^{s}_{\rho,\infty}$ avec s < 0)

Quelques rappels sur *BV*:

$$J(u) = \sup\left\{-\int_{\Omega} u \operatorname{div} \phi dx : \phi \in \mathcal{C}^{\infty}_{c}(\Omega, \mathbb{R}^{N}), |\phi| \leqslant 1 \, \forall x \in \Omega\right\}$$

et la norme associée à BV est $\|.\|_{BV} = \|.\|_{L^1} + J(.)$. Rigoureusement, le dual de BV n'est pas un espace fonctionnel mais si l'on note \mathcal{BV} la fermeture de BV dans $\mathcal{S}(\mathbb{R}^2)$, alors \mathcal{BV} a un dual noté G.

So t $v \in G$, alors $\exists g = (g_1, g_2) \in L^{\infty} \times L^{\infty}$ tel que $v = \operatorname{div} g$ et

$$\|v\|_{G} = \inf_{g} \left\| \left(|g_{1}|^{2} + |g_{2}|^{2} \right)^{\frac{1}{2}} \right\|_{L^{\infty}}$$

◆□ ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆

BV et *G* ne sont pas directement duaux mais ont des "comportements duaux" (*BV* pour les structures et *G* pour ce qui oscille).

En effet, pour $g_N(x) = \chi(x) \cos(Nx_1)$, on vérifie que

 $\|g_N\|_G \leqslant \frac{C}{N}$

1

La fonctionnelle proposée par Meyer est donc

$$(\hat{u}, \hat{v}) = \inf_{(u,v) \in BV \times G} \{J(u) + \lambda \|v\|_G, f = u + v\}$$

Problème: impossible de faire de calcul variationnel à cause de la norme $\|.\|_{L^{\infty}}$ présente dans la définition de la norme $\|.\|_{G}$.

(雪) (ヨ) (ヨ)

En pratique: L'approche de Osher et Vese

Propriété: $\forall f \in L^{\infty}, \|f\|_{L^{\infty}} = \lim_{p \to \infty} \|f\|_{L^{p}}.$

$$(\hat{u},\hat{g}) = \inf_{(u,g)\in BV\times(L^{\infty}\times L^{\infty})} \left\{ J(u) + \lambda \|f - (u + \operatorname{div} g)\|_{L^{2}}^{2} + \mu \left\| \sqrt{g_{1}^{2} + g_{2}^{2}} \right\|_{L^{p}} \right\}$$

Euler-Lagrange:

$$\begin{cases} u = f - \partial_x g_1 - \partial_y g_2 + \frac{1}{\lambda} \operatorname{div} \left(\frac{\nabla u}{|\nabla u|} \right) \\ \mu \left(\left\| \sqrt{g_1^2 + g_2^2} \right\|_{L^p} \right)^{1-p} \left(\sqrt{g_1^2 + g_2^2} \right)^{p-2} g_1 = 2\lambda \left[\frac{\partial}{\partial x} (u - f) + \partial_{xx}^2 g_1 + \partial_{xy}^2 g_2 \right] \\ \mu \left(\left\| \sqrt{g_1^2 + g_2^2} \right\|_{L^p} \right)^{1-p} \left(\sqrt{g_1^2 + g_2^2} \right)^{p-2} g_2 = 2\lambda \left[\frac{\partial}{\partial y} (u - f) + \partial_{xy}^2 g_1 + \partial_{yy}^2 g_2 \right] \end{cases}$$

 \rightarrow Problèmes d'instabilités numériques + hypothèse ($p\rightarrow\infty)$ non respectée.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

En pratique: L'approche d'Aujol

 cadre discret: X = R^N × R^N, Y = X × X équipés de produits scalaires et normes euclidiens,

$$\bullet \ \to \ G = \{ v \in X / \exists g \in Y, v = \operatorname{div} g \},$$

• les textures sont un minimum oscillantes $\rightarrow \exists \mu > 0$ tel que $\|\mathbf{v}\|_{G} \leq \mu$

On définit alors

$$G_{\mu} = \{ \mathbf{v} \in \mathbf{X} / \| \mathbf{v} \|_{\mathbf{G}} \leqslant \mu \}$$

et la fonction indicatrice associée:

$$J^{\star}(v) = \chi_{G_1}(v) = egin{cases} 0 & ext{si} & v \in G_1 \ +\infty & ext{sinon} \end{cases}$$

Propriété: J^* est l'opérateur dual de J ($J^{**} = J$).

La fonctionnelle à minimiser est alors:

$$(\hat{u}, \hat{v}) = \inf_{(u,v) \in BV \times G_{\mu}} \left\{ J(u) + J^*\left(\frac{v}{\mu}\right) + (2\lambda)^{-1} \|f - u - v\|_{L^2}^2 \right\}$$

⇒ Utilisation des projecteurs non-linéaires de Chambolle:

v fixé $\hat{u} = f - v - P_{G_{\lambda}}(f - v)$ u fixé $\hat{v} = P_{G_{\mu}}(f - u)$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Les projecteurs de Chambolle

Il facile de voir que $w = P_{G_1}\left(\frac{g}{\lambda}\right)$ (l'opérateur de projection sur G_1) est un minimiseur de

$$\frac{\left\|\boldsymbol{w}-\left(\frac{\boldsymbol{g}}{\lambda}\right)\right\|^{2}}{2}+\frac{1}{\lambda}J^{\star}(\boldsymbol{w})$$

et que $u=g-P_{G_{\lambda}}\left(rac{g}{\lambda}
ight)$ est un minimiseur de

$$\frac{\|u-g\|^2}{2\lambda}+J(u)$$

où le projecteur est donné par le résultat suivant:

Théorème

Si $\tau < \frac{1}{8}$ alors $\lambda \text{div}(p^n)$ converge vers $P_{G_{\lambda}}(g)$ quand $n \to +\infty$ où $p^n + \pi (\nabla (\text{div}(p^n) - g))$

$$p_{i,j}^{n+1} = rac{oldsymbol{p}_{i,j}^n + au \left(
abla \left(\operatorname{div} \left(oldsymbol{p}^n
ight) - rac{oldsymbol{g}}{\lambda}
ight)
ight)_{i,j}}{1 + au \left| \left(
abla \left(\operatorname{div} \left(oldsymbol{p}^n
ight) - rac{oldsymbol{g}}{\lambda}
ight)
ight)_{i,j}
ight|$$

Journée modélisation mathématique des textures - GdR ISIS

Algorithme numérique

Initialisation:

$$u_0 = v_0 = 0$$

Itérations:

$$v_{n+1} = P_{G_{\mu}}(f - u_n)$$

$$u_{n+1} = f - v_{n+1} - P_{G_{\lambda}}(f - v_{n+1})$$

On arrête l'algorithme si

$$\max\left(|u_{n+1}-u_n|,|v_{n+1}-v_n|\right)\leqslant\epsilon$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

ou si l'on atteint un nombre maximal d'itérations prescrit.

Exemple

◆□ > ◆□ > ◆豆 > ◆豆 > →

æ

Sur le choix des paramètres ...

Le choix de λ et μ n'est a priori pas trivial.

Aujol et al. ont proposé une méthode permettant de trouver λ et μ :

- λ fixé petit,
- $\mu = \lambda^* = \arg_{\lambda} \min(corr(u_{\lambda}^{ROF}, v_{\lambda}^{ROF}))$

$$||u||_{BV} + \lambda ||v||_{L^2}^2 + \mu ||w||_G$$
 où $f = u + v + w$

Theorem (J.Gilles et Y.Meyer à paraître dans IEEE Trans.Image Processing)

Si $||f||_G \leq \frac{1}{2\lambda}$ et $||f||_{BV} \leq \frac{\mu}{2\lambda}$, alors u = w = 0 et la décomposition optimale est f = 0 + f + 0. Si $||f||_G \leq \frac{1}{2\lambda}$ mais que $||f||_{BV} > \frac{\mu}{2\lambda}$, alors trois cas sont possibles pour la décomposition optimale f = u + v + w.

$$\begin{array}{l} \mathbf{0} \quad u = 0, \|v\|_{BV} = \frac{\mu}{2\lambda}, \|v\|_{G} < \frac{1}{2\lambda} \ et \langle v, w \rangle = \frac{\mu}{2\lambda} \|w\|_{G}, \\ \mathbf{3} \quad w = 0, \|v\|_{BV} \leq \frac{\mu}{2\lambda}, \|v\|_{G} = \frac{1}{2\lambda} \ et \langle u, v \rangle = \frac{1}{2\lambda} \|u\|_{BV} \ et \ finalement \\ \mathbf{3} \quad \|v\|_{BV} = \frac{\mu}{2\lambda}, \|v\|_{G} = \frac{1}{2\lambda}, \langle u, v \rangle = \frac{1}{2\lambda} \|u\|_{BV} \ et \ \langle v, w \rangle = \frac{\mu}{2\lambda} \|w\|_{G}. \end{array}$$

A l'inverse, tout triplet (u, v, w) qui vérifie (1), ou (2), ou (3) est optimal pour f = u + v + w et leur valeurs correspondantes de λ and μ .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem

Si $f(x) = a(x) + b(x) \cos(\omega_1 x + \varphi_1) + c(x) \cos(\omega_2 x + \varphi_2)$ (a, b, c de classe C^1 à support compact) et si l'on suppose que $1 \le \lambda \ll |\omega_1| \ll \frac{\mu}{\lambda} \ll |\omega_2|$ alors f = u + v + w vérifie pour un certain entier j

$$\|\Delta_j[w](x) - c(x)\cos(\omega_2 x + \varphi_2)\|_{L^1} \leqslant \epsilon = C rac{\mu}{\lambda|\omega_2|}.$$

où Δ_j est opérateur de type Littlewood-Paley.

Journée modélisation mathématique des textures - GdR ISIS

Theorem

Si $f(x) = a(x) + b(x) \cos(\omega_1 x + \varphi_1) + c(x) \cos(\omega_2 x + \varphi_2)$ (a, b, c de classe C^1 à support compact) et si l'on suppose que $1 \le \lambda \ll |\omega_1| \ll \frac{\mu}{\lambda} \ll |\omega_2|$ alors f = u + v + w vérifie pour un certain entier j

$$\|\Delta_j[w](x) - c(x)\cos(\omega_2 x + \varphi_2)\|_{L^1} \leqslant \epsilon = C rac{\mu}{\lambda|\omega_2|}.$$

où Δ_i est opérateur de type Littlewood-Paley.

Journée modélisation mathématique des textures - GdR ISIS

Theorem

Si $f(x) = a(x) + b(x) \cos(\omega_1 x + \varphi_1) + c(x) \cos(\omega_2 x + \varphi_2)$ (a, b, c de classe C^1 à support compact) et si l'on suppose que $1 \le \lambda \ll |\omega_1| \ll \frac{\mu}{\lambda} \ll |\omega_2|$ alors f = u + v + w vérifie pour un certain entier j

$$\|\Delta_j[w](x) - c(x)\cos(\omega_2 x + \varphi_2)\|_{L^1} \leqslant \epsilon = C rac{\mu}{\lambda|\omega_2|}.$$

où Δ_j est opérateur de type Littlewood-Paley.

 $c(x)\cos(\omega_2 x + \varphi_2)$ $\Delta_i[w]$

Journée modélisation mathématique des textures - GdR ISIS

Cas des images bruitées

문 🕨 👘 🖻

Modèle u + v + w adaptatif: principe

- textures $\in G_{\mu_1}$ et bruit $\in G_{\mu_2}$ où $\mu_1 >> \mu_2$, μ_2 μ_1
- adaptabilité locale au contenu de l'image.
 - renforcer la régularisation en l'absence de textures,
 - $\implies \nu(i,j) \in]0; 1[$ (carte des régions),

Modèle u + v + w adaptatif: formulation

$$F_{\lambda,\mu_1,\mu_2}^{JG}(u,v,w) = J(u) + J^*\left(\frac{v}{\mu_1}\right) + J^*\left(\frac{w}{\mu_2}\right) + (2\lambda)^{-1} \|f - u - \nu_1 v - \nu_2 w\|_{L^2}^2$$

où $\nu_1 = 1 - \nu_2$ (cartes locales)

$$\hat{u} = f - \nu_1 v - \nu_2 w - P_{G_\lambda} (f - \nu_1 v - \nu_2 w)$$
$$\hat{v} = P_{G_{\mu_1}} \left(\frac{f - u - \nu_2 w}{\nu_1} \right)$$
$$\hat{w} = P_{G_{\mu_2}} \left(\frac{f - u - \nu_1 v}{\nu_2} \right)$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Modèle u + v + w adaptatif: résultat

Journée modélisation mathématique des textures - GdR ISIS

$$\mathsf{Bruit} \Longleftrightarrow \mathsf{distribution} \in E_{\delta} = \left\{ w \in \dot{B}^{\infty}_{-1,\infty} / \|w\|_{\dot{B}^{\infty}_{-1,\infty}} \leqslant \delta \right\}$$

$$F^{AC2}_{\lambda,\mu,\delta}(u,v,w) = J(u) + J^*\left(\frac{v}{\mu}\right) + B^*\left(\frac{w}{\delta}\right) + (2\lambda)^{-1} \|f - u - v - w\|_{L^2}^2$$

$$\begin{split} \hat{u} &= f - \hat{v} - \hat{w} - P_{G_{\lambda}}(f - \hat{v} - \hat{w}) \\ \hat{v} &= P_{G_{\mu}}(f - \hat{u} - \hat{w}) \\ \hat{w} &= P_{E_{\delta}}(f - \hat{u} - \hat{v}) = f - \hat{u} - \hat{v} - WST(f - \hat{u} - \hat{v}, 2\delta) \end{split}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Modèle u + v + w de Besov: résultat

Journée modélisation mathématique des textures - GdR ISIS

Remplacement: ondelettes \implies contourlettes

But: apporter une meilleure prise en compte de la géométrie dans les images.

On définit alors:

- Espaces de contourlettes $CT_{p,q}^s$ et $\|.\|_{CT_{p,q}^s}$.
- Seuillage doux \iff projection sur $CT_{\delta} = \left\{ f \in CT^{\infty}_{-1,\infty} / \|f\|_{CT^{\infty}_{-1,\infty}} \leqslant \delta \right\}.$

<週→ < 注→ < 注→ □ 注

Modèle u + v + w avec contourlettes: résultat

Journée modélisation mathématique des textures - GdR ISIS