

Modélisation d'images par espace BV et espaces de fonctions oscillantes

Jérôme Gilles
DGA-IP/ASC/EORD, CMLA/ENS Cachan

gilles.research@free.fr http://jerome.gilles91.free.fr

De nombreuses applications nécessitent l'analyse des textures. Défense \to différents types d'imagerie \to différents types de textures

De nombreuses applications nécessitent l'analyse des textures. Défense \to différents types d'imagerie \to différents types de textures

De nombreuses applications nécessitent l'analyse des textures. Défense \to différents types d'imagerie \to différents types de textures

- Difficulté de donner une définition unique de la texture,
- De nombreux points de vue:
 - Approches fréquentielles,
 - Approches statistiques,
 - Notion de "texton",
 - Approches analyse fonctionnelle
- ightarrow point de vue de l'analyse fonctionnelle, les textures étant modélisées comme des fonctions oscillantes.

Quels espaces de fonctions choisir? Comment décrit-on un modèle de texture?

Préambules

Soit une image f définie sur \mathbb{R}^n ou $\Omega = [0; 1]^n$ (puis périodisation de f).

Soit $X(\mathbb{R}^n)$ ou $X(\Omega)$ des espaces de fonctions.

But: modéliser f = u + v où

- u sera la composante régulière ou "géometrique" (objets,...),
- v la composante "oscillante" (textures ou bruit)

Préambules

On cherche $f \in X_1 + X_2$ tel que f = u + v avec $u \in X_1$ et $v \in X_2$.

La décomposition étant obtenue par le problème de minimisation suivant:

$$(\hat{u}, \hat{v}) = \inf_{(u,v) \in X_1 \times X_2} \{F_1(u) + \lambda F_2(v), f = u + v\}$$

où $F_1, F_2 > 0$ et X_1, X_2 sont des espaces de fonctions ou distributions

tels que $F_1(u) < \infty$ et $F_2(v) < \infty$ ssi $(u, v) \in X_1 \times X_2$.

Préambules

Comment choisir les espaces X_1 et X_2 ?

Une bonne idée est de prendre X_1, X_2 tels que

- $F_1(u) \ll F_2(u)$
- $F_2(v) \ll F_1(v)$

Le point de départ: Rudin-Osher-Fatemi (ROF)

But initial: débruitage, restauration

$$(\hat{u}, \hat{v}) = \inf_{(u,v) \in BV \times L^2} \{J(u) + \lambda ||v||_{L^2}^2, f = u + v\}$$

où $J(u) = |u|_{BV} = \int |Du|$ (semi-norme sur BV l'espace des fonctions à variations bornées).

⇒ pas adapté pour capturer correctement les fonctions oscillantes.

ROF: propriétés

Soit la fonction $g_N(x) = \chi(x) \cos(Nx_1)$ où $\chi(x)$ est la fonction indicatrice sur un domaine fini, N la fréquence et x_1 une direction dans l'image. Alors:

$$\|g_N\|_{L^2} \approx \frac{1}{\sqrt{2}} \|\chi\|_{L^2}$$

$$J(g_N) = \frac{2N}{\pi} \|\chi\|_{L^1} + \epsilon_N$$

La composante v ne dépend pas de N, elle se comporte de la même façon quelque soit la texture.

ROF: propriétés

Autres défauts:

- Le modèle n'a aucun sens dans le cas continu si l'on a la présence de bruit blanc gaussien car la norme L² est infinie (⇒ utilisation d'espaces à indices de régularité < 0),
- Phénomène de "perte d'intensité": si $f = \alpha \chi_D$ alors $\forall R \geqslant \frac{1}{\lambda \alpha}$ (R le rayon du disque D) on a

$$u = \left(\alpha - \frac{1}{\lambda R}\right) \chi_D$$
$$v = \frac{1}{\lambda R} \chi_D$$

Pb "général": si $q > 1, \forall p \ge 1$ alors $J(u) + \lambda ||f - u||_{L^p}^q$ a ce défaut.

L'approche de Meyer

Idée: prendre des normes plus faibles de fonctions généralisées pour modéliser ν .

Trois espaces retenus par Meyer:

•
$$E = \dot{B}^{\infty}_{-1}$$
,

•
$$F = \text{div}(BMO \times BMO)$$
,

•
$$G = \operatorname{div}(L^{\infty} \times L^{\infty})$$

Autre candidat: $W^{s,p}$ avec s < 2.

Les espaces E et F

- $E = \dot{B}^{\infty}_{-1,\infty}$: espace de Besov \to Travaux de A.Haddad, Y.Meyer.
- $F = \text{div}(BMO \times BMO)$: $v \in F$ si $\exists g = (g_1, g_2) \in BMO \times BMO$ tel que $v = \text{div}\,g$ et

$$\|v\|_F = \inf_g \{\|g_1\|_{BMO} + \|g_2\|_{BMO}\}$$

où *BMO* (Bounded Mean Oscillation) sont les espaces John et Nirenberg avec

$$||f||_{BMO} = \sup_{Q} \frac{1}{|Q|} \int_{Q} |f - f_{Q}| dx$$
 où $f_{Q} = \frac{1}{|Q|} \int_{Q} f(x) dx$

 \rightarrow Travaux de J.B.Garnett, P.Jones, T.M.Le, L.Vese (utilisation de $W^{s,p}$, $\dot{B}^s_{p,\infty}$ avec s<0)

L'espace G

Quelques rappels sur BV:

$$J(u) = \sup \left\{ -\int_{\Omega} u \operatorname{div} \phi dx : \phi \in \mathcal{C}^{\infty}_{c}(\Omega, \mathbb{R}^{N}), |\phi| \leqslant 1 \ \forall x \in \Omega
ight\}$$

et la norme associée à BV est $\|.\|_{BV} = \|.\|_{L^1} + J(.)$. Rigoureusement, le dual de BV n'est pas un espace fonctionnel mais si l'on note \mathcal{BV} la fermeture de BV dans $\mathcal{S}(\mathbb{R}^2)$, alors \mathcal{BV} a un dual noté G.

Soit $v \in G$, alors $\exists g = (g_1, g_2) \in L^{\infty} \times L^{\infty}$ tel que v = div g et

$$\|v\|_G = \inf_g \left\| \left(|g_1|^2 + |g_2|^2 \right)^{\frac{1}{2}} \right\|_{L^{\infty}}.$$

L'espace G

BV et G ne sont pas directement duaux mais ont des "comportements duaux" (BV pour les structures et G pour ce qui oscille).

En effet, pour $g_N(x) = \chi(x) \cos(Nx_1)$, on vérifie que

$$\|g_N\|_G \leqslant \frac{C}{N}$$

Le modèle

La fonctionnelle proposée par Meyer est donc

$$(\hat{u}, \hat{v}) = \inf_{(u,v) \in BV \times G} \{J(u) + \lambda ||v||_{G}, f = u + v\}$$

Problème: impossible de faire de calcul variationnel à cause de la norme $\|.\|_{L^{\infty}}$ présente dans la définition de la norme $\|.\|_{G}$.

En pratique: L'approche de Osher et Vese

Propriété: $\forall f \in L^{\infty}, \|f\|_{L^{\infty}} = \lim_{p \to \infty} \|f\|_{L^{p}}.$

$$(\hat{u},\hat{g}) = \inf_{(u,g) \in \mathit{BV} \times (L^{\infty} \times L^{\infty})} \left\{ J(u) + \lambda \|f - (u + \mathsf{div} \ g)\|_{\mathit{L}^{2}}^{2} + \mu \left\| \sqrt{g_{1}^{2} + g_{2}^{2}} \right\|_{\mathit{L}^{p}} \right\}$$

Euler-Lagrange:

$$\begin{cases} u = f - \partial_x g_1 - \partial_y g_2 + \frac{1}{\lambda} \text{div} \left(\frac{\nabla u}{|\nabla u|} \right) \\ \mu \left(\left\| \sqrt{g_1^2 + g_2^2} \right\|_{L^p} \right)^{1-p} \left(\sqrt{g_1^2 + g_2^2} \right)^{p-2} g_1 = 2\lambda \left[\frac{\partial}{\partial x} (u - f) + \partial_{xx}^2 g_1 + \partial_{xy}^2 g_2 \right] \\ \mu \left(\left\| \sqrt{g_1^2 + g_2^2} \right\|_{L^p} \right)^{1-p} \left(\sqrt{g_1^2 + g_2^2} \right)^{p-2} g_2 = 2\lambda \left[\frac{\partial}{\partial y} (u - f) + \partial_{xy}^2 g_1 + \partial_{yy}^2 g_2 \right] \end{cases}$$

ightarrow Problèmes d'instabilités numériques + hypothèse ($p
ightarrow \infty$) non respectée.

En pratique: L'approche d'Aujol

- cadre discret: $X = \mathbb{R}^N \times \mathbb{R}^N$, $Y = X \times X$ équipés de produits scalaires et normes euclidiens,
- $\bullet \to G = \{v \in X/\exists g \in Y, v = \operatorname{div} g\},\$
- les textures sont un minimum oscillantes $\to \exists \mu > 0$ tel que $\| \mathbf{v} \|_{\mathbf{G}} \leqslant \mu$

On définit alors

$$G_{\mu} = \{ \mathbf{v} \in \mathbf{X} / \|\mathbf{v}\|_{\mathbf{G}} \leqslant \mu \}$$

et la fonction indicatrice associée:

$$J^\star(v) = \chi_{G_1}(v) = egin{cases} 0 & ext{si} & v \in G_1 \ +\infty & ext{sinon} \end{cases}$$

Propriété: J^* est l'opérateur dual de J ($J^{**} = J$).

En pratique: L'approche d'Aujol

La fonctionnelle à minimiser est alors:

$$(\hat{u}, \hat{v}) = \inf_{(u,v) \in BV \times G_{\mu}} \left\{ J(u) + J^* \left(\frac{v}{\mu} \right) + (2\lambda)^{-1} \|f - u - v\|_{L^2}^2 \right\}$$

⇒ Utilisation des projecteurs non-linéaires de Chambolle:

$$v$$
 fixé $\hat{u} = f - v - P_{G_{\lambda}}(f - v)$ u fixé $\hat{v} = P_{G_{u}}(f - u)$

Les projecteurs de Chambolle

Il facile de voir que $w=P_{G_1}\left(\frac{g}{\lambda}\right)$ (l'opérateur de projection sur G_1) est un minimiseur de

$$\frac{\left\|w-\left(\frac{g}{\lambda}\right)\right\|^2}{2}+\frac{1}{\lambda}J^*(w)$$

et que $u=g-P_{G_{\lambda}}\left(rac{g}{\lambda}
ight)$ est un minimiseur de

$$\frac{\|u-g\|^2}{2\lambda}+J(u)$$

où le projecteur est donné par le résultat suivant:

Théorème

 $Si au < rac{1}{8} \ alors \ \lambda div \ (p^n) \ converge \ vers \ P_{G_{\lambda}}(g) \ quand \ n o + \infty$ où

$$p_{i,j}^{n+1} = \frac{p_{i,j}^n + \tau \left(\nabla \left(\operatorname{div} \left(p^n \right) - \frac{g}{\lambda} \right) \right)_{i,j}}{1 + \tau \left| \left(\nabla \left(\operatorname{div} \left(p^n \right) - \frac{g}{\lambda} \right) \right)_{i,j} \right|}$$

Algorithme numérique

Initialisation:

$$u_0 = v_0 = 0$$

Itérations:

$$v_{n+1} = P_{G_{\mu}}(f - u_n)$$

 $u_{n+1} = f - v_{n+1} - P_{G_{\lambda}}(f - v_{n+1})$

On arrête l'algorithme si

$$\max\left(|u_{n+1}-u_n|,|v_{n+1}-v_n|\right)\leqslant\epsilon$$

ou si l'on atteint un nombre maximal d'itérations prescrit.

Exemple

Sur le choix des paramètres . . .

Le choix de λ et μ n'est a priori pas trivial.

Aujol et al. ont proposé une méthode permettant de trouver λ et μ :

- λ fixé petit,
- $\mu = \lambda^* = \arg_{\lambda} \min(corr(u_{\lambda}^{ROF}, v_{\lambda}^{ROF}))$

$$||u||_{BV} + \lambda ||v||_{L^2}^2 + \mu ||w||_G$$
 où $f = u + v + w$

Theorem (J.Gilles et Y.Meyer à paraître dans IEEE Trans.Image Processing)

Si $||f||_G \leqslant \frac{1}{2\lambda}$ et $||f||_{BV} \leqslant \frac{\mu}{2\lambda}$, alors u = w = 0 et la décomposition optimale est f = 0 + f + 0.

Si $||f||_G \leqslant \frac{1}{2\lambda}$ mais que $||f||_{BV} > \frac{\mu}{2\lambda}$, alors trois cas sont possibles pour la décomposition optimale f = u + v + w.

- ① u = 0, $||v||_{BV} = \frac{\mu}{2\lambda}$, $||v||_{G} < \frac{1}{2\lambda}$ et $\langle v, w \rangle = \frac{\mu}{2\lambda} ||w||_{G}$,
- ② w = 0, $||v||_{BV} \leqslant \frac{\mu}{2\lambda}$, $||v||_G = \frac{1}{2\lambda}$ et $\langle u, v \rangle = \frac{1}{2\lambda} ||u||_{BV}$ et finalement,

A l'inverse, tout triplet (u, v, w) qui vérifie (1), ou (2), ou (3) est optimal pour f = u + v + w et leur valeurs correspondantes de λ and μ .

Theorem

Si $f(x) = a(x) + b(x)\cos(\omega_1 x + \varphi_1) + c(x)\cos(\omega_2 x + \varphi_2)$ (a, b, c de classe \mathcal{C}^1 à support compact) et si l'on suppose que $1 \leqslant \lambda \ll |\omega_1| \ll \frac{\mu}{\lambda} \ll |\omega_2|$ alors f = u + v + w vérifie pour un certain entier i

$$\|\Delta_j[w](x) - c(x)\cos(\omega_2 x + \varphi_2)\|_{L^1} \leqslant \epsilon = C\frac{\mu}{\lambda|\omega_2|}.$$

où Δ_i est opérateur de type Littlewood-Paley.

 $c(x)\cos(\omega_2 x + \varphi_2)$

Theorem

Si $f(x) = a(x) + b(x)\cos(\omega_1 x + \varphi_1) + c(x)\cos(\omega_2 x + \varphi_2)$ (a, b, c de classe \mathcal{C}^1 à support compact) et si l'on suppose que $1 \leqslant \lambda \ll |\omega_1| \ll \frac{\mu}{\lambda} \ll |\omega_2|$ alors f = u + v + w vérifie pour un certain entier j

$$\|\Delta_j[w](x) - c(x)\cos(\omega_2 x + \varphi_2)\|_{L^1} \leqslant \epsilon = C\frac{\mu}{\lambda|\omega_2|}.$$

où Δ_i est opérateur de type Littlewood-Paley.

Structures

Textures

Theorem

Si $f(x) = a(x) + b(x)\cos(\omega_1 x + \varphi_1) + c(x)\cos(\omega_2 x + \varphi_2)$ (a, b, c de classe \mathcal{C}^1 à support compact) et si l'on suppose que $1 \leqslant \lambda \ll |\omega_1| \ll \frac{\mu}{\lambda} \ll |\omega_2|$ alors f = u + v + w vérifie pour un certain entier j

$$\|\Delta_j[w](x) - c(x)\cos(\omega_2 x + \varphi_2)\|_{L^1} \leqslant \epsilon = C\frac{\mu}{\lambda|\omega_2|}.$$

où Δ_i est opérateur de type Littlewood-Paley.

$$\Delta_i[w]$$

Cas des images bruitées

Modèle u + v + w adaptatif: principe

• textures $\in G_{\mu_1}$ et bruit $\in G_{\mu_2}$ où $\mu_1 >> \mu_2$,

$$\mu_2$$
 μ_1

- adaptabilité locale au contenu de l'image.
 - renforcer la régularisation en l'absence de textures,
 - $\Longrightarrow \nu(i,j) \in]0; 1[$ (carte des régions),

Modèle u + v + w adaptatif: formulation

$$F_{\lambda,\mu_{1},\mu_{2}}^{JG}(u,v,w) = J(u) + J^{*}\left(\frac{v}{\mu_{1}}\right) + J^{*}\left(\frac{w}{\mu_{2}}\right) + (2\lambda)^{-1} \|f - u - \nu_{1}v - \nu_{2}w\|_{L^{2}}^{2}$$

où $\nu_1 = 1 - \nu_2$ (cartes locales)

$$\hat{u} = f - \nu_1 \mathbf{v} - \nu_2 \mathbf{w} - P_{G_{\lambda}} (f - \nu_1 \mathbf{v} - \nu_2 \mathbf{w})$$

$$\hat{\mathbf{v}} = P_{G_{\mu_1}} \left(\frac{f - u - \nu_2 \mathbf{w}}{\nu_1} \right)$$

$$\hat{\mathbf{w}} = P_{G_{\mu_2}} \left(\frac{f - u - \nu_1 \mathbf{v}}{\nu_2} \right)$$

Modèle u + v + w adaptatif: résultat

Modèle u + v + w de Besov

Bruit
$$\iff$$
 distribution $\in E_{\delta} = \left\{ w \in \dot{B}_{-1,\infty}^{\infty} / \|w\|_{\dot{B}_{-1,\infty}^{\infty}} \leqslant \delta \right\}$

$$F_{\lambda,\mu,\delta}^{AC2}(u,v,w) = J(u) + J^* \left(\frac{v}{\mu}\right) + B^* \left(\frac{w}{\delta}\right) + (2\lambda)^{-1} \|f - u - v - w\|_{L^2}^2$$

$$\begin{split} \hat{u} &= f - \hat{v} - \hat{w} - P_{G_{\lambda}}(f - \hat{v} - \hat{w}) \\ \hat{v} &= P_{G_{\mu}}(f - \hat{u} - \hat{w}) \\ \hat{w} &= P_{E_{\delta}}(f - \hat{u} - \hat{v}) = f - \hat{u} - \hat{v} - WST(f - \hat{u} - \hat{v}, 2\delta) \end{split}$$

Modèle u + v + w de Besov: résultat

Utilisation des contourlettes

Remplacement: ondelettes ⇒ contourlettes

But: apporter une meilleure prise en compte de la géométrie dans les images.

On définit alors:

- Espaces de contourlettes $CT_{p,q}^s$ et $\|.\|_{CT_{p,q}^s}$.
- $\begin{array}{l} \bullet \ \ \text{Seuillage doux} \Longleftrightarrow \text{projection sur} \\ CT_{\delta} = \Big\{ f \in CT^{\infty}_{-1,\infty} / \|f\|_{CT^{\infty}_{-1,\infty}} \leqslant \delta \Big\}. \end{array}$

Modèle u + v + w avec contourlettes: résultat

