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Tremendous results of “AI” or Deep Learning in many fields

but ...

how to choose the appropriate architecture?
how many hidden layers?
how many neurons?
how to choose the appropriate size of filters and their number
in convolutional layers?
how to choose the appropriate learning objective function?
how big should be the training set?
what are really doing deep neural networks?
why do they work?

⇒ need of a mathematical theory of deep learning
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Spline Theory of Deep Network

Work from Richard Baraniuk (ECE Dept - Rice University)
and his collaborators
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RC 3 y = fΘ(x) =
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)
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where Θ = {θ(1), θ(2), . . . , θ(L)} are the parameters (must be
learned), and f (l)

θ(l) represent layer ` (∈ {1, . . . ,L}).
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θ(L)x yz(1) z(2) z(`−1) z(`)z(0) = = z(L)

RD = RD(0) RC = RD(L)RD(1) RD(2) RD(`−1) RD(`)

Architecture:
RC 3 y = fΘ(x) =

(
f (L)
θ(L)
◦ f (L−1)
θ(L−1)

◦ . . . ◦ f (`)
θ(`)
◦ . . . ◦ f (1)

θ(1)

)
(x) , x ∈ RD

where Θ = {θ(1), θ(2), . . . , θ(L)} are the parameters (must be
learned), and f (l)

θ(l) represent layer ` (∈ {1, . . . ,L}).

Intermediate variables:
z(`)(x) is the output of layer `
=
(

f (`)
θ(`)
◦ . . . ◦ f (1)

θ(1)

)
(x) , z(0)(x) = x , z(L)(x) = y

Assume that z(`) ∈ RD(`)

(take the convention that D(0) = D and D(L) = C)
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x can be any type of signal (audio, image,. . . ).
Consider multichannel images: z(`) of size C(`) × I(`) × J(`) = D(`)
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Samples can be indexed either in the
tensor or flattened vector notation:
[z(`)(x)]c,i,j = [z(`)(x)]k
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fully connected operator: f (`)
W (z(`−1)(x)) = W (`)z(`−1)(x) + b(`)

W where
W (`) ∈ RD(`)×D(`−1)

is a dense matrix and b(`)
W ∈ RD(`)

is a bias vector.

convolutional operator: f (`)
C (z(`−1)(x)) = C(`)z(`−1)(x) + b(`)

C where
C(`) ∈ RD(`)×D(`−1)

is a multichannel block-circulant convolution matrix and
b(`)

C ∈ RD(`)

is a bias vector.

activation operator: pointwise nonlinearity σ,[
f (`)
σ (z(`−1)(x))

]
k

= σ([z(`−1)(x)]k ) where

σReLU(u) = max(0,u),
σLReLU(u) = max(ηu,u) , η > 0,
σabs(u) = |u|,
σsig(u) = 1

1+e−u ,
σtanh(u) = 2σsig(2u)− 1.
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pooling operator: policy ρ to reduce dimension. Collection of

indices
{
R(`)

k

}D(`)

k=1
.

Example: max pooling:
[
f (`)
ρ

(
z(`−1)(x)

)]
k

= maxd∈R(`)
k

[
z(`−1)(x)

]
d .
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pooling operator: policy ρ to reduce dimension. Collection of

indices
{
R(`)

k

}D(`)

k=1
.

Example: max pooling:
[
f (`)
ρ

(
z(`−1)(x)

)]
k

= maxd∈R(`)
k

[
z(`−1)(x)

]
d .

Definition
A DN layer f (`) comprises a single nonlinear DN operator composed with
any preceeding affine operator lying between it and the preceding
nonlinear operator.

Example: CNN have two types of layers: 1) convolution-activation and 2)
max-pooling.

Output operator: y = g(fΘ(x)) where g : RC → RC .
Example: softmax for classification problems, nothing for regression
problems.
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Partition RD into R regions: Ω = {ω1, . . . , ωR},
Local mappings: Φ = {φ1, . . . , φR}, φr : ωr → R s.t φr (x) := 〈[α]r ,.,x〉+ [β]r
where α ∈ RR×D and β ∈ RR define hyperplanes in RD

ω1

ω2

ω3 ω4

Rφ1

φ2

φ4

φ3

Definition (Multivariate Spline Operator)

s[α, β,Ω](x) =
R∑

r=1

(〈[α]r ,.,x〉+ [β]r ) 1(x ∈ ωr ) =: 〈α[x],x〉+ β[x]

Note: piecewise but not globally affine and convex (except for R = 1, degenerate spline)
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Issue with general splines: to find the best spline approximation, we need
to optimize wrt α, β and Ω→ minimizing wrt Ω is cumbersome to perform.

⇒ constrain the multivariate spline to be globally convex→ max-affine
spline functions: s[α, β,Ω](x) = maxr=1,...,R〈[α]r ,.,x〉+ [β]r

Properties:

α and β define Ω (adaptive partitioning splines) thus we simply
denote them s[α, β](x),

always piecewise affine and globally convex (hence continuous),

conversely

Theorem
Any h ∈ C0(RD) that is piecewise affine and globally convex, ∃α, β s.t
h(x) = s[α, β](x).
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Generalization to operators: max-affine spline operators (MASO)
S[A,B] : RD → RK :

S[A,B](x) =


max

r=1,...,R
〈[A]1,r ,.,x〉+ [B]1,r

...
max

r=1,...,R
〈[A]K ,r ,.,x〉+ [B]K ,r

 =: A[x]x + B[x]

where A ∈ RK×R×D and B ∈ RK × RR .
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Generalization to operators: max-affine spline operators (MASO)
S[A,B] : RD → RK :

S[A,B](x) =


max

r=1,...,R
〈[A]1,r ,.,x〉+ [B]1,r

...
max

r=1,...,R
〈[A]K ,r ,.,x〉+ [B]K ,r

 =: A[x]x + B[x]

where A ∈ RK×R×D and B ∈ RK × RR .

Theorem
Any operator H(x) = [h1(x), . . . ,hK (x)]T with ∀k ,hk ∈ C0(RD) piecewise
affine and globally convex, ∃A,B s.t H(x) = S[A,B](x).

Extension: a MASO can approximate arbitrarily closely any (nonlinear)
operator that is convex in each output dimension.
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Use the same bias β′ for all dimension:

S′[A, β′](x) =


max

r=1,...,R
〈[A]1,r ,., (x + β′)〉

...
max

r=1,...,R
〈[A]K ,r ,., (x + β′)〉


This simplified MASO is still sufficient to model most activation functions
like ReLU, leaky-ReLU, absolute value; and linearly independent filters.
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Basic DN operators are MASOs!

fully connected f (`)
W : S[A(`)

W ,B(`)
W ] where R = 1, [A(`)

W ]k.1,. = [W (`)]k,. and

[B(`)
W ]k,1 = [b(`)

W ]k ,

convolutional f (`)
C : S[A(`)

C ,B(`)
C ] where R = 1, [A(`)

C ]k.1,. = [C(`)]k,. and

[B(`)
C ]k,1 = [b(`)

C ]k ,

activation f (`)
σ : S[A(`)

σ ,B(`)
σ ] where R = 2, [B(`)

σ ]k,1 = [B(`)
σ ]k,2 = 0 ∀k , and

ReLU: [A(`)
σ ]k,1,. = 0 ; [A`σ]k,2,. = ek ∀k ,

leaky-ReLU: [A(`)
σ ]k,1,. = νek ; [A(`)

σ ]k,2,. = ek ∀k , ν > 0
absolute value: [A(`)

σ ]k,1,. = −ek ; [A(`)
σ ]k,2,. = ek ∀k

(ek is the k−th canonical basis element of RD`
)

pooling f (`)
ρ : [A(`)

ρ ,B(`)
ρ ]

max-pooling: R = #Rk , [A
(`)
ρ ]k,.,. = {ei , i ∈ Rk} and

[B(`)
ρ ]k,r = 0,∀k , r

average-pooling: R = 1, [A(`)
ρ ]k,1,. = 1

#Rk

∑
i∈Rk

ei and

[B(`)
ρ ]k,1 = 0,∀k
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Proposition
A DN layer constructed from an arbitrary composition of fully
connected/convolution operators followed by one activation or pooling
operator is a MASO S[A(`),B(`)] such that

f (`)(z(`−1)) = A(`)[x]z(`−1)(x) + B(`)[x].

Example: fully connected operator S[A(`)
W ,B(`)

W ] followed by an activation
operator S[A(`)

σ ,B(`)
σ ] is a MASO S[A(`),B(`)] where

[A(`)]k,r ,. = W (`)T [A(`)
σ ]k,r ,. and [B(`)]k,r = [B(`)

σ ]k,r + b(`)T
W [A(`)

σ ]k,r ,..
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Proposition
A DN layer constructed from an arbitrary composition of fully
connected/convolution operators followed by one activation or pooling
operator is a MASO S[A(`),B(`)] such that

f (`)(z(`−1)) = A(`)[x]z(`−1)(x) + B(`)[x].

Example: fully connected operator S[A(`)
W ,B(`)

W ] followed by an activation
operator S[A(`)

σ ,B(`)
σ ] is a MASO S[A(`),B(`)] where

[A(`)]k,r ,. = W (`)T [A(`)
σ ]k,r ,. and [B(`)]k,r = [B(`)

σ ]k,r + b(`)T
W [A(`)

σ ]k,r ,..

Theorem
A DN constructed from an arbitrary composition of fully
connected/convolution, activation, and pooling operators of the previous
types is a composition of MASOs. Moreover, the overall composition itself
an ASO.
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Consequence of previous theorem:

the mapping from x to z(`)(x) is an ASO,

⇔ z(`)(x) is a signal-dependent, piecewise affine transformation of x

⇔ this particular affine mapping depends on which partition of the spline x
falls in RD

(Note that in the case we use operators which are convex but not
piecewise affine, we can show that such mapping can be approximated
arbitrarily closely by a MASOs. In the case, the operators are not convex
then the same result hold with the use of ASOs.)
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CNN affine mapping formula:

Fully-con

x y

Conv
ReLU

max-pool

layer 1 layer ` layer L− 1 layer L

g

z(L)
CNN(x) = W (L)

(
1∏

`=L−1

A(`)
ρ [x]A(`)

σ [x]C(`)

)
x

+ W (L)
L−1∑
`=1

 `+1∏
j=L−1

A(j)
ρ [x]A(j)

σ [x]C(j)

(A(`)
ρ [x]A(`)

σ [x]b(`)
C

)
+ b(L)

W
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ResNet affine mapping formula:

Fully-con

x y

Conv
ReLU

layer 1 layer ` layer L− 1 layer L

g

Conv-skip

+ + +

z(L)
RES(x) = W (L)

 1∏
`=L−1

(
A(`)
σ [x]C(`) + C(`)

skip

) x

+ W (L)
L−1∑
`=1

 `+1∏
j=L−1

(
A(j)
σ [x]C(j) + C(`)

skip

)(A(`)
σ [x]b(`)

C + b(`)
skip

)
+ b(L)

W
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The explicit formula can be rewritten in a general form:

z(L)(x) =
(

W (L)A[x]
)

x +
(

W (L)B[x] + b(L)
W

)

interpretation 1: z(L)(x) is the output of bank of linear matched filters
(i.e inner product of x with each row of W (L)A[x]) + set of biases
(prior probability over the classes)

interpretation 2: hierarchical matched filters:
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The explicit formula can be rewritten in a general form:

z(L)(x) =
(

W (L)A[x]
)

x +
(

W (L)B[x] + b(L)
W

)

interpretation 1: z(L)(x) is the output of bank of linear matched filters
(i.e inner product of x with each row of W (L)A[x]) + set of biases
(prior probability over the classes)

interpretation 2: hierarchical matched filters:

z(L) = W (L) max
r (L−1)

(
A(L−1)

r (L−1) . . .max
r (2)

(
A(2)

r (2) max
r (1)

(
A(1)

r (1) x + B(1)

r (1)

)
+ B(2)

r (2)

)
. . .+ B(L−1)

r (L−1)

)
+ b(L)

W
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The explicit formula can be rewritten in a general form:

z(L)(x) =
(

W (L)A[x]
)

x +
(

W (L)B[x] + b(L)
W

)

interpretation 1: z(L)(x) is the output of bank of linear matched filters
(i.e inner product of x with each row of W (L)A[x]) + set of biases
(prior probability over the classes)

interpretation 2: hierarchical matched filters:

z(L) = W (L) max
r (L−1)

(
A(L−1)

r (L−1) . . .max
r (2)

(
A(2)

r (2) max
r (1)

(
A(1)

r (1) x + B(1)

r (1)

)
+ B(2)

r (2)

)
. . .+ B(L−1)

r (L−1)

)
+ b(L)

W

Visualization: extract (via the backpropagation algorithm) the templates

A[x]c =
d [z(L)(x)]c

x
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See Balestriero and Baraniuk, “Mad Max: Affine Spline Insights into Deep Learning”
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It is known that a matched filterbank is optimal to classify signals
immersed in additive white Gaussian noise→ not realistic in practice.
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It is known that a matched filterbank is optimal to classify signals
immersed in additive white Gaussian noise→ not realistic in practice.

Eldar & Oppenheim proposed to use orthogonal templates→ can be
achieved in DN by penalizing non-zero off-diagonal entries in W (L)(W (L))T

via the learning objective function:

LCE + λ
∑

c1 6=c2

∣∣∣〈[W (L)]c1,., [W
(L)]c2,.

〉∣∣∣2
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Conclusion - Perspectives

MASO appear to be a well-adapted tool to study DN

Different point of views (operator, template matched filters,. . . )

Universality of MASO DNs (i.e approximation theory)

Stability and Lipschitz constant

Colinear template and Data set memorization

Multiscale partitions

Connections with Vector Quantization (information theory), K-means (statistics) and
Voronoi tiling (geometry)

new constraints on the templates

further study of the case of non-convex activation functions

link with wavelet theory

approximation theory (smoothness spaces of decision boundaries, optimal approximation)

Randall Balestriero, Richard Baraniuk, “Mad Max: Affine Spline Insights into Deep Learning,”

arxiv.org/abs/1805.06576, 2018
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