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Deep Learning today

Tremendous results of “Al” or Deep Learning in many fields ]

but ...

how to choose the appropriate architecture?
how many hidden layers?
how many neurons?

how to choose the appropriate size of filters and their number
in convolutional layers?

how to choose the appropriate learning objective function?
how big should be the training set?

what are really doing deep neural networks?

why do they work?

= need of a mathematical theory of deep learning
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Spline Theory of Deep Network

Work from Richard Baraniuk (ECE Dept - Rice University)
and his collaborators
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Deep Learning - Notations (1/2)

Architecture: O AL 0 0
RC5y =fo(x) = ({0 o fi o ofi) oo fiD) (x), x € RD
where © = {#(V) 9@ 9} are the parameters (must be

learned), and fo((',)) represent layer ¢ (€ {1,...,L}).
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1 (1) 2 (2) (£-1) 7 (£) i3

Architecture:

L L1 l 1
RCsy =fo(x) = ({1 ofi Vo off? 0. off)) (x), xR
where © = {#(V) 9@ 9} are the parameters (must be

learned), and fo((',)) represent layer ¢ (€ {1,...,L}).

Intermediate variables:
2(9(x) is the output of layer ¢

= (fe((i)) 0...0 f9((112> x), zZ0x)=x, zD(x) =y
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Deep Learning - Notations (1/2)

| | | |

RD — RD(U) | RD“) | RDu) | RD“’” | RDM | | RC — RD<L>
| \ | | |
| | | |

Architecture: gy o a)

c _ D
R* 5y = fo(X) = (fe()Ofo(L BLE .ofe([)o...ofe(”)(x), xeR
where © = {#(V 9@ 9L} are the parameters (must be
learned), and fe((,) represent layer ¢ (¢ {1,...,L}).
Intermediate variables:

2(Y(x) is the output of layer ¢

= () o o) x), 20x) = x, 20(x) =y

Assume that z() € RP"”
(take the convention that D(®) = D and D) = C)
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Deep Learning - Notations (2/2)

X can be any type of signal (audio, image,...).
Consider multichannel images: z() of size C(9) x /(O x J(©) = p(®)
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Deep Learning - Notations (2/2)
X can be any type of signal (audio, image,...).
Consider multichannel images: z() of size C(9) x /(O x J(©) = p(®)
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Deep Network (DN) basic operators (1/2)

@ fully connected operator: f)(z(!~(x)) = WOz~ (x) + b{) where
W e RPxD“"" is a dense matrix and by} € RP" is a bias vector.
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Deep Network (DN) basic operators (1/2)

@ fully connected operator: f)(z(!~(x)) = WOz~ (x) + b{) where
W e RPxD“"" is a dense matrix and by} € RP" is a bias vector.

@ convolutional operator: £’ (z(‘~1(x)) = CYz(=)(x) + b where

¢ f—1) . . . . .
c ¢ RQZ)XDM " is a multichannel block-circulant convolution matrix and
bl e RP is a bias vector.

@ activation operator: pointwise nonlinearity o,
1921 (x)) = o (2= (x)]x) where

U'ReLU(U = maX(O, U),
O'LReLU(U) = max(nu, U) , N> 0,
cabs(U) = [U],

osig(U) = 1+1efu’

Utanh(u) = 20'3/9(2U) —1.
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Deep Network (DN) basic operators (2/2)
@ pooling operator: policy p to reduce dimension. Collection of
(£)
idi 0 °
indices {Rk }k:1.

Example: max pooling: {f,@ (z(f*1)(x))} = max

K der”) 27D x)] -
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@ pooling operator: policy p to reduce dimension. Collection of
(£)
idi 0 °
indices {Rk }k:1.

Example: max pooling: {f,fe) (z(f*‘)(x))} = max_ o (27N (X)] 4
k

k

Definition

A DN layer () comprises a single nonlinear DN operator composed with
any preceeding affine operator lying between it and the preceding
nonlinear operator.

Example: CNN have two types of layers: 1) convolution-activation and 2)
max-pooling.
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Deep Network (DN) basic operators (2/2)
@ pooling operator: policy p to reduce dimension. Collection of
(£)
idi 0 °
indices {Rk }k:1.

Example: max pooling: {f,fe) (z(f*‘)(x))} = maxy o 27D (X)] -
k

k

Definition

A DN layer () comprises a single nonlinear DN operator composed with
any preceeding affine operator lying between it and the preceding
nonlinear operator.

Example: CNN have two types of layers: 1) convolution-activation and 2)
max-pooling.

Output operator: y = g(f5(x)) where g : R¢ — RC.

Example: softmax for classification problems, nothing for regression
problems.
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Multivariate Spline Operators
Partition R? into R regions: Q = {w,...,wr},

wy
wi

w3 Wy
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Multivariate Spline Operators

Partition R? into R regions: Q = {w,...,wr},

Local mappings: ® = {¢1,...,8r},dr : wr = R s.t ¢(X) := ([o],., X) + [B]
where a € R7*P and 3 € RF define hyperplanes in RP

R

Definition (Multivariate Spline Operator)

sla, B, Q)(x Z ([edr,., %) + [B]) 1(X € wr) =: {a[X], X) + B[X]

r=1

Note: piecewise but not globally affine and convex (except for R = 1, degenerate spline)
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Max-Affine Spline Operators (1/2)

Issue with general splines: to find the best spline approximation, we need
to optimize wrt o, 8 and Q — minimizing wrt Q is cumbersome to perform.
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Max-Affine Spline Operators (1/2)

Issue with general splines: to find the best spline approximation, we need

to optimize wrt o, 8 and Q — minimizing wrt Q is cumbersome to perform.

= constrain the multivariate spline to be globally convex — max-affine
spline functions: s[«, 8, Q](X) = max,=1_.. g{[a]r.,X) + []

Properties:

@ « and g define Q (adaptive partitioning splines) thus we simply
denote them s, 8](X),

@ always piecewise affine and globally convex (hence continuous),

@ conversely

Any h € C°(RP) that is piecewise affine and globally convex, 3a, B s.t

h(x) = s[a, B](x).
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Max-Affine Spline Operators (2/2)

Generalization to operators: max-affine spline operators (MASQO)
S[A, B] : RP — RX:

max _ ([Al1,r,., %) + [Bl1,r

SIA, B(x) = : —: AlX]X + B[x]
max_ ([Alkr.X) + Bl

where A € Rf¥*FxD gnd B € RX x RA.
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Max-Affine Spline Operators (2/2)

Generalization to operators: max-affine spline operators (MASQO)
S[A, B] : RP — RX:

max _ ([Al1,r,., %) + [Bl1,r

sABx=| : —: AlX]X + B[x]
max_ ([Alkr.X) + Bl

,,,,

where A € Rf¥*FxD gnd B € RX x RA.

Any operator H(X) = [hy(X), ..., hk(X)]" with Vk, h € C°(RP) piecewise
affine and globally convex, 3A, B s.t H(x) = S[A, B](x).

Extension: a MASO can approximate arbitrarily closely any (nonlinear)
operator that is convex in each output dimension.
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Simplified Max-Affine Spline Operators

Use the same bias /3’ for all dimension:
max_ ([Alr.r. (X+8)

S'[A, B'(x) = :
_max_ ([Alk.r..,(x+5))

=1,...,

This simplified MASO is still sufficient to model most activation functions
like ReLU, leaky-RelLU, absolute value; and linearly independent filters.
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Deep networks and MASOs

Basic DN operators are MASOs!
@ fully connected 1.): S[A}Y), B{)] where R = 1,[AlD)], ;= [W®)], and
B 11 = [bmk,
@ convolutional 1$: S[AY), BY] where R = 1,[A%)] 1 = [C], and
BNkt = [b“ﬁk
@ activation £1"): S[AY), BYY] where R =2, [BY4 1 = [BY]k2 =0 Vk, and
o ReLU: [AY41. =0 ;  [Allka. = ek VK,
o leaky-ReLU: [AVNks. =vex  :  [AYa =exVk,v>0
o absolute value: [AV]x1. = —ex  :  [AD]k2. = ek VK
(ek is the k—th canonical basis element of RDZ)
o poollngf (A () B )]
e max-pooling: R = #Rx, [AE,Z)],(,_,A = {ej,i € Rx} and
Bk, = 0,Vk, r
e average-pooling: R=1,[A E)],” #Rk > icr, € and
B+ = 0,Vk
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12/22



Composition of MASOs

Proposition

A DN layer constructed from an arbitrary composition of fully
connected/convolution operators followed by one activation or pooling
operator is a MASO S[A), B\Y)] such that

f(f)(z(f—ﬂ) - A(é)[x]z(é’—ﬂ(x) + B“)[x].

Example: fully connected operator S[A%), B%)] followed by an activation
operator S[AY, BY] is a MASO S[A®), B(] where
[AO) . = WOTIAD] , and [BO]y, = [BYx, + by [A kv,
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Composition of MASOs

Proposition

A DN layer constructed from an arbitrary composition of fully
connected/convolution operators followed by one activation or pooling
operator is a MASO S[A), B\Y)] such that

f(f)(z(é—ﬂ) - A(é)[x]z(é’—ﬂ(x) 4+ B“)[x].

Example: fully connected operator S[A%), B%)] followed by an activation
operator S[AY, BY] is a MASO S[A®), B(] where
[AO) . = WOTIAD] , and [BO]y, = [BYx, + by [A kv,

A DN constructed from an arbitrary composition of fully
connected/convolution, activation, and pooling operators of the previous
types is a composition of MASOs. Moreover, the overall composition itself
an ASO.

(Al Seminar) Spline Theory of Deep Networks 13/22



DN are Signal-Dependent Affine Transformations

Consequence of previous theorem:

the mapping from x to z(Y)(x) is an ASO,
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DN are Signal-Dependent Affine Transformations

Consequence of previous theorem:
the mapping from x to z(Y)(x) is an ASO,
< z()(x) is a signal-dependent, piecewise affine transformation of x

< this particular affine mapping depends on which partition of the spline x
falls in RP
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DN are Signal-Dependent Affine Transformations

Consequence of previous theorem:

the mapping from x to z(Y)(x) is an ASO,
< z()(x) is a signal-dependent, piecewise affine transformation of x

< this particular affine mapping depends on which partition of the spline x
falls in RP

(Note that in the case we use operators which are convex but not
piecewise affine, we can show that such mapping can be approximated
arbitrarily closely by a MASOs. In the case, the operators are not convex
then the same result hold with the use of ASOs.)

(Al Seminar) Spline Theory of Deep Networks 14/22



Explicit input/ouput formula (1/2)

CNN affine mapping formula:

mm Conv  mm max-pool

mm ReLU mm Fully-con

ree’se

layer 1 layer ¢ layer L — 1 layer L

1
25 (x) = W ( 11
=L—

AV XA [x] c“)) X

4 1

L—1 £+1
+wO " ( [T AV xAY [x]c“) (ADXIAD X6 ) + by

=1 \j=L—1
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Explicit input/ouput formula (2/2)

ResNet affine mapping formula:

mm Conv
mm ReLU mm Fully-con

layer 1 layer ¢ layer L — 1 layer L
1
28 (x) = (AP + cf,) | x
(=L—1
— 241 y y
+ w Z H < [X] cY) + Csklp) (AE,)[x]b(C) ‘(skap) + b( )
j=L—1
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Template Matching Machines (1/3)

The explicit formula can be rewritten in a general form:

zZ0(x) = (W(L)A[x]) X + (W(L)B[x] + b%))
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Template Matching Machines (1/3)

The explicit formula can be rewritten in a general form:

zZ0(x) = (W(L)A[X]) X + (W(L)B[x] + bf/f,))

@ interpretation 1: z(5)(x) is the output of bank of linear matched filters
(i.e inner product of x with each row of W(Y) A[x]) + set of biases
(prior probability over the classes)
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Template Matching Machines (1/3)

The explicit formula can be rewritten in a general form:

zZ0(x) = (W(L)A[X]) X + (W(L)B[x] + bf/f,))

@ interpretation 1: z(5)(x) is the output of bank of linear matched filters
(i.e inner product of x with each row of W(Y) A[x]) + set of biases
(prior probability over the classes)

@ interpretation 2: hierarchical matched filters:

Ly _ it (L=1) &) (1) (1) (2) (L—1) (L)
200 = W) o (AGD) g (A e (Al e+ B0)) B8 ) AT ) ol
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Template Matching Machines (1/3)

The explicit formula can be rewritten in a general form:

20(x) = (W(L)A[X]) X + (W(L)B[x] + bf/f,))

@ interpretation 1: z(5)(x) is the output of bank of linear matched filters
(i.e inner product of x with each row of W(Y A[x]) + set of biases
(prior probability over the classes)

@ interpretation 2: hierarchical matched filters:

0 _ it (L-1) @) (1) (1) (2) (L-1) (L)
20 = w! )rr(TE’f) (Arum - max (A,(2> max (A,mx + B,m) + B,(Z)) et Br(L71)) + by
Visualization: extract (via the backpropagation algorithm) the templates

d[zO(x)]e

AlX]c = X

(Al Seminar) Spline Theory of Deep Networks 17/22



Input x

Template Matching Machines (2/3)

plane, 11.7

ship, 1.1 dog, -3.4

(a) largeCNN, ReLU activation, no BN
Input x plane, 14.3

ship, 10.7

dog, 11.4

(b) largeCNN, absolute value activation, no BN
Input x plane, 0.0

ship, -1.4 dog, -0.7

Input x

(c) largeCNN, ReLU activation, BN
plane, 3.4

ship, -1.9 dog, 2.5
Y

largeCNN, absolute value activation, BN
Spline Theory of Deep Networks

Ao
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Template Matching Machines (3/3)

6, -18.6
(a) smallResNet, ReLLU activation, no BN (b) smallResNet, ReLLU activation, BN

Input x 8, 1644.5 6, 803.1 3, 1159.0 Input x 8, 54.4 6, -32.1 3, -11.2

(¢) smallResNet, absolute value activation, no BN (d) smallResNet, absolute value activation, BN

See Balestriero and Baraniuk, “Mad Max: Affine Spline Insights into Deep Learning”
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A simple way of boosting DN performances

It is known that a matched filterbank is optimal to classify signals
immersed in additive white Gaussian noise — not realistic in practice.
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A simple way of boosting DN performances

It is known that a matched filterbank is optimal to classify signals
immersed in additive white Gaussian noise — not realistic in practice.

Eldar & Oppenheim proposed to use orthogonal templates — can be
achieved in DN by penalizing non-zero off-diagonal entries in WO (W)

via the learning objective function:

Loe+ A Y [(WOle, . (w0, )

Ci#£C2
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A simple way of boosting DN performances

It is known that a matched filterbank is optimal to classify signals
immersed in additive white Gaussian noise — not realistic in practice.

Eldar & Oppenheim proposed to use orthogonal templates — can be

achieved in DN by penalizing non-zero off-diagonal entries in WO (W)
via the learning objective function:

Loe+ A Y [(WOle, . (w0, )

Ci#£C2

Learing Rate:0.0005

8

10g(£ce)

Test Accuracy

')
Test Accuracy
—

0,00 025 050 0.75 1.00 125 150 175 2.00 [ 25 50 75 100 125 150 175 200
(a) A (b)

FIG. 5. Orthogonal templates significantly boost DN performance with no change to the architecture. (a) Classification perfor-
mance of the largeCNN trained on CIFAR100 for different values of the orthogonality penalty A in . We plot the average
(back dots), standard deviation (gray shade), and maximum (blue dots) of the test set accuracy over 15 runs. (b, top) Training set
error. The blue/black curves corresponds to A = 0/1. (b, bottom) Test set accuracy over the course of the learning.
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On the geometry of the partitioning
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On the geometry of the partitioning

Training time —>

o k]

o[k,

1k, r]

21/22
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On the geometry of the partitioning

(b) Leaky ReLU
k=2

.
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A 1 5
(c) Absolute value
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Conclusion - Perspectives

MASOQO appear to be a well-adapted tool to study DN

Different point of views (operator, template matched filters,...)
Universality of MASO DNs (i.e approximation theory)

Stability and Lipschitz constant

Colinear template and Data set memorization

Multiscale partitions

Connections with Vector Quantization (information theory), K-means (statistics) and
Voronoi tiling (geometry)

new constraints on the templates

further study of the case of non-convex activation functions

link with wavelet theory

approximation theory (smoothness spaces of decision boundaries, optimal approximation)

Randall Balestriero, Richard Baraniuk, “Mad Max: Affine Spline Insights into Deep Learning,”
arxiv.org/abs/1805.06576, 2018
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