Spline Theory of Deep Network

Jérôme Gilles

Department of Mathematics and Statistics, SDSU jgilles@sdsu.edu http://jegilles.sdsu.edu

Tremendous results of "AI" or Deep Learning in many fields

but ...

Tremendous results of "AI" or Deep Learning in many fields

but ...

• how to choose the appropriate architecture?

Tremendous results of "AI" or Deep Learning in many fields

but ...

- how to choose the appropriate architecture?
- how many hidden layers?

• • • • • • • • • • • • • •

Tremendous results of "AI" or Deep Learning in many fields

but ...

- how to choose the appropriate architecture?
- how many hidden layers?
- how many neurons?

Tremendous results of "AI" or Deep Learning in many fields

but ...

- how to choose the appropriate architecture?
- how many hidden layers?
- how many neurons?
- how to choose the appropriate size of filters and their number in convolutional layers?

4 **A b b b b b b**

Tremendous results of "AI" or Deep Learning in many fields

but ...

- how to choose the appropriate architecture?
- how many hidden layers?
- how many neurons?
- how to choose the appropriate size of filters and their number in convolutional layers?
- how to choose the appropriate learning objective function?

4 **A b** 4 **b** 5 4

Tremendous results of "AI" or Deep Learning in many fields

but ...

- how to choose the appropriate architecture?
- how many hidden layers?
- how many neurons?
- how to choose the appropriate size of filters and their number in convolutional layers?
- how to choose the appropriate learning objective function?
- how big should be the training set?

Tremendous results of "AI" or Deep Learning in many fields

but ...

- how to choose the appropriate architecture?
- how many hidden layers?
- how many neurons?
- how to choose the appropriate size of filters and their number in convolutional layers?
- how to choose the appropriate learning objective function?
- how big should be the training set?
- what are really doing deep neural networks?

A (10) > A (10) > A

Tremendous results of "AI" or Deep Learning in many fields

but ...

- how to choose the appropriate architecture?
- how many hidden layers?
- how many neurons?
- how to choose the appropriate size of filters and their number in convolutional layers?
- how to choose the appropriate learning objective function?
- how big should be the training set?
- what are really doing deep neural networks?
- why do they work?

A (10) > A (10) > A

Tremendous results of "AI" or Deep Learning in many fields

but ...

- how to choose the appropriate architecture?
- how many hidden layers?
- how many neurons?
- how to choose the appropriate size of filters and their number in convolutional layers?
- how to choose the appropriate learning objective function?
- how big should be the training set?
- what are really doing deep neural networks?
- why do they work?

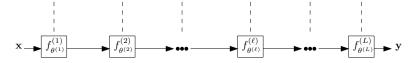
 \Rightarrow need of a mathematical theory of deep learning

Spline Theory of Deep Network

Work from Richard Baraniuk (ECE Dept - Rice University) and his collaborators

4 **A b b b b b b**

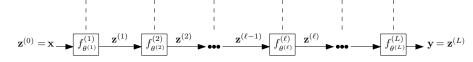
Deep Learning - Notations (1/2)



Architecture:

 $\mathbb{R}^{C} \ni \mathbf{y} = f_{\Theta}(\mathbf{x}) = \left(f_{\theta_{(L)}}^{(L)} \circ f_{\theta_{(L-1)}}^{(L-1)} \circ \ldots \circ f_{\theta_{(\ell)}}^{(\ell)} \circ \ldots \circ f_{\theta_{(1)}}^{(1)}\right)(\mathbf{x}), \ \mathbf{x} \in \mathbb{R}^{D}$ where $\Theta = \{\theta^{(1)}, \theta^{(2)}, \ldots, \theta^{(L)}\}$ are the parameters (must be learned), and $f_{\theta^{(l)}}^{(l)}$ represent layer $\ell \ (\in \{1, \ldots, L\})$.

Deep Learning - Notations (1/2)

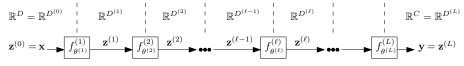


Architecture:

 $\mathbb{R}^{C} \ni \mathbf{y} = f_{\Theta}(\mathbf{x}) = \left(f_{\theta_{(L)}}^{(L)} \circ f_{\theta_{(L-1)}}^{(L-1)} \circ \ldots \circ f_{\theta_{(\ell)}}^{(\ell)} \circ \ldots \circ f_{\theta_{(1)}}^{(1)}\right)(\mathbf{x}), \ \mathbf{x} \in \mathbb{R}^{D}$ where $\Theta = \{\theta^{(1)}, \theta^{(2)}, \ldots, \theta^{(L)}\}$ are the parameters (must be learned), and $f_{\theta^{(l)}}^{(l)}$ represent layer $\ell \ (\in \{1, \ldots, L\})$.

Intermediate variables: $\mathbf{z}^{(\ell)}(\mathbf{x})$ is the output of layer ℓ $= \left(f^{(\ell)}_{\theta_{(\ell)}} \circ \ldots \circ f^{(1)}_{\theta_{(1)}}\right)(\mathbf{x}), \ \mathbf{z}^{(0)}(\mathbf{x}) = \mathbf{x}, \ \mathbf{z}^{(L)}(\mathbf{x}) = \mathbf{y}$

Deep Learning - Notations (1/2)



Architecture:

 $\mathbb{R}^{C} \ni \mathbf{y} = f_{\Theta}(\mathbf{x}) = \left(f_{\theta_{(L)}}^{(L)} \circ f_{\theta_{(L-1)}}^{(L-1)} \circ \ldots \circ f_{\theta_{(\ell)}}^{(\ell)} \circ \ldots \circ f_{\theta_{(1)}}^{(1)}\right)(\mathbf{x}), \ \mathbf{x} \in \mathbb{R}^{D}$ where $\Theta = \{\theta^{(1)}, \theta^{(2)}, \ldots, \theta^{(L)}\}$ are the parameters (must be learned), and $f_{\theta^{(l)}}^{(l)}$ represent layer $\ell \ (\in \{1, \ldots, L\})$.

Intermediate variables: $\mathbf{z}^{(\ell)}(\mathbf{x})$ is the output of layer ℓ $= \left(f_{\theta_{(\ell)}}^{(\ell)} \circ \ldots \circ f_{\theta_{(1)}}^{(1)}\right)(\mathbf{x}), \ \mathbf{z}^{(0)}(\mathbf{x}) = \mathbf{x}, \ \mathbf{z}^{(L)}(\mathbf{x}) = \mathbf{y}$

Assume that $\mathbf{z}^{(\ell)} \in \mathbb{R}^{D^{(\ell)}}$ (take the convention that $D^{(0)} = D$ and $D^{(L)} = C$)

< 回 > < 三 > < 三 >

Deep Learning - Notations (2/2)

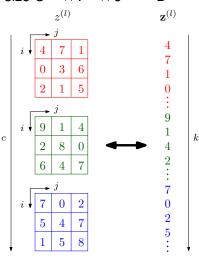
x can be any type of signal (audio, image,...). Consider multichannel images: $z^{(\ell)}$ of size $C^{(\ell)} \times I^{(\ell)} \times J^{(\ell)} = D^{(\ell)}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Deep Learning - Notations (2/2)

x can be any type of signal (audio, image,...). Consider multichannel images: $z^{(\ell)}$ of size $C^{(\ell)} \times I^{(\ell)} \times J^{(\ell)} = D^{(\ell)}$

Samples can be indexed either in the tensor or flattened vector notation: $[z^{(\ell)}(x)]_{c,i,j} = [\mathbf{z}^{(\ell)}(\mathbf{x})]_k$



Deep Network (DN) basic operators (1/2)

• fully connected operator: $f_W^{(\ell)}(\mathbf{z}^{(\ell-1)}(\mathbf{x})) = W^{(\ell)}\mathbf{z}^{(\ell-1)}(\mathbf{x}) + b_W^{(\ell)}$ where $W^{(\ell)} \in \mathbb{R}^{D^{(\ell)} \times D^{(\ell-1)}}$ is a dense matrix and $b_W^{(\ell)} \in \mathbb{R}^{D^{(\ell)}}$ is a bias vector.

Deep Network (DN) basic operators (1/2)

- fully connected operator: $f_W^{(\ell)}(\mathbf{z}^{(\ell-1)}(\mathbf{x})) = W^{(\ell)}\mathbf{z}^{(\ell-1)}(\mathbf{x}) + b_W^{(\ell)}$ where $W^{(\ell)} \in \mathbb{R}^{D^{(\ell)} \times D^{(\ell-1)}}$ is a dense matrix and $b_W^{(\ell)} \in \mathbb{R}^{D^{(\ell)}}$ is a bias vector.
- convolutional operator: $f_C^{(\ell)}(\mathbf{z}^{(\ell-1)}(\mathbf{x})) = C^{(\ell)}\mathbf{z}^{(\ell-1)}(\mathbf{x}) + b_C^{(\ell)}$ where $C_C^{(\ell)} \in \mathbb{R}^{D^{(\ell)} \times D^{(\ell-1)}}$ is a multichannel block-circulant convolution matrix and $b_C^{(\ell)} \in \mathbb{R}^{D^{(\ell)}}$ is a bias vector.

く 戸 と く ヨ と く ヨ と …

Deep Network (DN) basic operators (1/2)

- fully connected operator: $f_{W}^{(\ell)}(\mathbf{z}^{(\ell-1)}(\mathbf{x})) = W^{(\ell)}\mathbf{z}^{(\ell-1)}(\mathbf{x}) + b_{W}^{(\ell)}$ where $W^{(\ell)} \in \mathbb{R}^{D^{(\ell)} \times D^{(\ell-1)}}$ is a dense matrix and $b_{W}^{(\ell)} \in \mathbb{R}^{D^{(\ell)}}$ is a bias vector.
- convolutional operator: $f_C^{(\ell)}(\mathbf{z}^{(\ell-1)}(\mathbf{x})) = C^{(\ell)}\mathbf{z}^{(\ell-1)}(\mathbf{x}) + b_C^{(\ell)}$ where $C^{(\ell)} \in \mathbb{R}^{D^{(\ell)} \times D^{(\ell-1)}}$ is a multichannel block-circulant convolution matrix and $b_{C}^{(\ell)} \in \mathbb{R}^{D^{(\ell)}}$ is a bias vector.
- activation operator: pointwise nonlinearity σ, $\left[f_{\sigma}^{(\ell)}(\mathbf{z}^{(\ell-1)}(\mathbf{x}))\right]_{\ell} = \sigma([\mathbf{z}^{(\ell-1)}(\mathbf{x})]_{k})$ where

•
$$\sigma_{ReLU}(u) = \max(0, u),$$

•
$$\sigma_{LReLU}(u) = \max(\eta u, u), \ \eta > 0,$$

•
$$\sigma_{abs}(u) = |u|,$$

•
$$\sigma_{sig}(u) = \frac{1}{1+e^{-u}},$$

•
$$\sigma_{tanh}(u) = 2\sigma_{sig}(2u) - 1.$$

A (10) × (10)

Deep Network (DN) basic operators (2/2)

pooling operator: policy ρ to reduce dimension. Collection of indices {R_k^(ℓ)}_{k=1}.
 Example: max pooling: [f_ρ^(ℓ) (**z**^(ℓ-1)(**x**))]_k = max_{d∈R_k^(ℓ)} [**z**^(ℓ-1)(**x**)]_d.

く 戸 と く ヨ と く ヨ と

Deep Network (DN) basic operators (2/2)

• pooling operator: policy ρ to reduce dimension. Collection of indices $\left\{\mathcal{R}_{k}^{(\ell)}\right\}_{k=1}^{D^{(\ell)}}$. Example: max pooling: $\left[f_{\rho}^{(\ell)}\left(\mathbf{z}^{(\ell-1)}(\mathbf{x})\right)\right]_{k} = \max_{d \in \mathcal{R}_{k}^{(\ell)}}\left[\mathbf{z}^{(\ell-1)}(\mathbf{x})\right]_{d}$.

Definition

A DN layer $f^{(\ell)}$ comprises a single nonlinear DN operator composed with any preceeding affine operator lying between it and the preceding nonlinear operator.

Example: CNN have two types of layers: 1) convolution-activation and 2) max-pooling.

イロト 不得 トイヨト イヨト

Deep Network (DN) basic operators (2/2)

• pooling operator: policy ρ to reduce dimension. Collection of indices $\left\{\mathcal{R}_{k}^{(\ell)}\right\}_{k=1}^{D^{(\ell)}}$. Example: max pooling: $\left[f_{\rho}^{(\ell)}\left(\mathbf{z}^{(\ell-1)}(\mathbf{x})\right)\right]_{k} = \max_{d \in \mathcal{R}_{k}^{(\ell)}}\left[\mathbf{z}^{(\ell-1)}(\mathbf{x})\right]_{d}$.

Definition

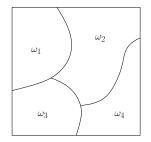
A DN layer $f^{(\ell)}$ comprises a single nonlinear DN operator composed with any preceeding affine operator lying between it and the preceding nonlinear operator.

Example: CNN have two types of layers: 1) convolution-activation and 2) max-pooling.

Output operator: $\mathbf{y} = g(f_{\Theta}(\mathbf{x}))$ where $g : \mathbb{R}^{C} \to \mathbb{R}^{C}$. Example: *softmax* for classification problems, nothing for regression problems.

Multivariate Spline Operators

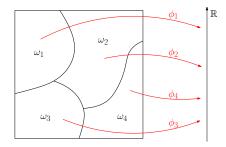
Partition \mathbb{R}^{D} into *R* regions: $\Omega = \{\omega_1, \ldots, \omega_R\},\$



э

Multivariate Spline Operators

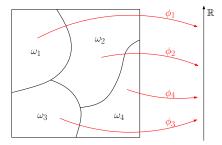
Partition \mathbb{R}^{D} into R regions: $\Omega = \{\omega_{1}, \ldots, \omega_{R}\}$, Local mappings: $\Phi = \{\phi_{1}, \ldots, \phi_{R}\}, \phi_{r} : \omega_{r} \to \mathbb{R} \text{ s.t } \phi_{r}(\mathbf{x}) := \langle [\alpha]_{r,.}, \mathbf{x} \rangle + [\beta]_{r}$ where $\alpha \in \mathbb{R}^{R \times D}$ and $\beta \in \mathbb{R}^{R}$ define hyperplanes in \mathbb{R}^{D}



< ロ > < 同 > < 回 > < 回 >

Multivariate Spline Operators

Partition \mathbb{R}^{D} into R regions: $\Omega = \{\omega_{1}, \ldots, \omega_{R}\}$, Local mappings: $\Phi = \{\phi_{1}, \ldots, \phi_{R}\}, \phi_{r} : \omega_{r} \to \mathbb{R}$ s.t $\phi_{r}(\mathbf{x}) := \langle [\alpha]_{r,.}, \mathbf{x} \rangle + [\beta]_{r}$ where $\alpha \in \mathbb{R}^{R \times D}$ and $\beta \in \mathbb{R}^{R}$ define hyperplanes in \mathbb{R}^{D}



Definition (Multivariate Spline Operator)

$$\boldsymbol{s}[\alpha,\beta,\Omega](\boldsymbol{x}) = \sum_{r=1}^{R} \left(\langle [\alpha]_{r,.}, \boldsymbol{x} \rangle + [\beta]_{r} \right) \boldsymbol{1}(\boldsymbol{x} \in \omega_{r}) =: \langle \alpha[\boldsymbol{x}], \boldsymbol{x} \rangle + \beta[\boldsymbol{x}]$$

Note: piecewise but not globally affine and convex (except for R = 1, degenerate spline)

(AI Seminar)

Issue with general splines: to find the best spline approximation, we need to optimize wrt α, β and $\Omega \rightarrow$ minimizing wrt Ω is cumbersome to perform.

Issue with general splines: to find the best spline approximation, we need to optimize wrt α, β and $\Omega \rightarrow$ minimizing wrt Ω is cumbersome to perform.

 \Rightarrow constrain the multivariate spline to be **globally convex** \rightarrow max-affine spline functions: $s[\alpha, \beta, \Omega](\mathbf{x}) = \max_{r=1,...,R} \langle [\alpha]_{r,.}, \mathbf{x} \rangle + [\beta]_r$

Issue with general splines: to find the best spline approximation, we need to optimize wrt α, β and $\Omega \rightarrow$ minimizing wrt Ω is cumbersome to perform.

 \Rightarrow constrain the multivariate spline to be **globally convex** \rightarrow max-affine spline functions: $s[\alpha, \beta, \Omega](\mathbf{x}) = \max_{r=1,...,R} \langle [\alpha]_{r,..}, \mathbf{x} \rangle + [\beta]_r$

Properties:

- *α* and *β* define Ω (adaptive partitioning splines) thus we simply
 denote them *s*[*α*, *β*](**x**),
- always piecewise affine and globally convex (hence continuous),
- conversely

< 日 > < 同 > < 回 > < 回 > < 回 > <

Issue with general splines: to find the best spline approximation, we need to optimize wrt α, β and $\Omega \rightarrow$ minimizing wrt Ω is cumbersome to perform.

 \Rightarrow constrain the multivariate spline to be **globally convex** \rightarrow max-affine spline functions: $s[\alpha, \beta, \Omega](\mathbf{x}) = \max_{r=1,...,R} \langle [\alpha]_{r,.}, \mathbf{x} \rangle + [\beta]_r$

Properties:

- *α* and *β* define Ω (adaptive partitioning splines) thus we simply
 denote them *s*[*α*, *β*](**x**),
- always piecewise affine and globally convex (hence continuous),
- conversely

Theorem

Any $h \in C^0(\mathbb{R}^D)$ that is piecewise affine and globally convex, $\exists \alpha, \beta$ s.t $h(\mathbf{x}) = s[\alpha, \beta](\mathbf{x})$.

(日)

Generalization to operators: max-affine spline operators (MASO) $S[A, B] : \mathbb{R}^D \to \mathbb{R}^K$:

$$S[A, B](\mathbf{x}) = \begin{bmatrix} \max_{r=1,...,R} & \langle [A]_{1,r,.}, \mathbf{x} \rangle + [B]_{1,r} \\ & \vdots \\ & \vdots \\ \max_{r=1,...,R} & \langle [A]_{K,r,.}, \mathbf{x} \rangle + [B]_{K,r} \end{bmatrix} =: A[\mathbf{x}]\mathbf{x} + B[\mathbf{x}]$$

where $A \in \mathbb{R}^{K \times R \times D}$ and $B \in \mathbb{R}^{K} \times \mathbb{R}^{R}$.

3

イロト 不得 トイヨト イヨト

Generalization to operators: max-affine spline operators (MASO) $S[A, B] : \mathbb{R}^D \to \mathbb{R}^K$:

$$S[A, B](\mathbf{x}) = \begin{bmatrix} \max_{r=1,...,R} & \langle [A]_{1,r,.}, \mathbf{x} \rangle + [B]_{1,r} \\ \vdots \\ \max_{r=1,...,R} & \langle [A]_{K,r,.}, \mathbf{x} \rangle + [B]_{K,r} \end{bmatrix} =: A[\mathbf{x}]\mathbf{x} + B[\mathbf{x}]$$

where $A \in \mathbb{R}^{K \times R \times D}$ and $B \in \mathbb{R}^{K} \times \mathbb{R}^{R}$.

Theorem

Any operator $H(\mathbf{x}) = [h_1(\mathbf{x}), \dots, h_K(\mathbf{x})]^T$ with $\forall k, h_k \in C^0(\mathbb{R}^D)$ piecewise affine and globally convex, $\exists A, B \text{ s.t } H(\mathbf{x}) = S[A, B](\mathbf{x})$.

Extension: a MASO can approximate arbitrarily closely any (nonlinear) operator that is convex in each output dimension.

	emina	

< 日 > < 同 > < 回 > < 回 > < 回 > <

Simplified Max-Affine Spline Operators

Use the same bias β' for all dimension:

$$S'[A, \beta'](\mathbf{x}) = \begin{bmatrix} \max_{r=1,...,R} & \langle [A]_{1,r,.}, (\mathbf{x} + \beta') \rangle \\ \vdots \\ \max_{r=1,...,R} & \langle [A]_{K,r,.}, (\mathbf{x} + \beta') \rangle \end{bmatrix}$$

This simplified MASO is still sufficient to model most activation functions like ReLU, leaky-ReLU, absolute value; and linearly independent filters.

A (10) A (10)

Deep networks and MASOs

Basic DN operators are MASOs!

- fully connected $f_W^{(\ell)}$: $S[A_W^{(\ell)}, B_W^{(\ell)}]$ where $R = 1, [A_W^{(\ell)}]_{k,1,.} = [W^{(\ell)}]_{k,.}$ and $[B_W^{(\ell)}]_{k,1} = [b_W^{(\ell)}]_k$,
- convolutional $f_C^{(\ell)}$: $S[A_C^{(\ell)}, B_C^{(\ell)}]$ where $R = 1, [A_C^{(\ell)}]_{k,1,.} = [C^{(\ell)}]_{k,.}$ and $[B_C^{(\ell)}]_{k,1} = [b_C^{(\ell)}]_{k,.}$
- activation $f_{\sigma}^{(\ell)}$: $S[A_{\sigma}^{(\ell)}, B_{\sigma}^{(\ell)}]$ where $R = 2, [B_{\sigma}^{(\ell)}]_{k,1} = [B_{\sigma}^{(\ell)}]_{k,2} = 0 \quad \forall k$, and
 - ReLU: $[A_{\sigma}^{(\ell)}]_{k,1,..} = 0$; $[A_{\sigma}^{\ell}]_{k,2,..} = \mathbf{e}_{k} \forall k$,
 - leaky-ReLU: $[A_{\sigma}^{(\ell)}]_{k,1,.} = \nu \mathbf{e}_k$; $[A_{\sigma}^{(\ell)}]_{k,2,.} = \mathbf{e}_k \ \forall k, \nu > 0$
 - absolute value: $[A_{\sigma}^{(\ell)}]_{k,1,.} = -\mathbf{e}_{k}$; $[A_{\sigma}^{(\ell)}]_{k,2,.} = \mathbf{e}_{k} \forall k$

 $(\mathbf{e}_k \text{ is the } k-\text{th canonical basis element of } \mathbb{R}^{D^{\ell}})$

- pooling $f_{\rho}^{(\ell)}$: $[A_{\rho}^{(\ell)}, B_{\rho}^{(\ell)}]$
 - max-pooling: $R = \# \mathcal{R}_k, [A_{\rho}^{(\ell)}]_{k,...} = \{ \mathbf{e}_i, i \in \mathcal{R}_k \}$ and $[B_{\rho}^{(\ell)}]_{k,r} = 0, \forall k, r$
 - average-pooling: $R = 1, [A_{\rho}^{(\ell)}]_{k,1,.} = \frac{1}{\#\mathcal{R}_k} \sum_{i \in \mathcal{R}_k} \mathbf{e}_i$ and $[B_{\rho}^{(\ell)}]_{k,1} = 0, \forall k$

Composition of MASOs

Proposition

A DN layer constructed from an arbitrary composition of fully connected/convolution operators followed by one activation or pooling operator is a MASO $S[A^{(\ell)}, B^{(\ell)}]$ such that

$$f^{(\ell)}(\mathbf{z}^{(\ell-1)}) = A^{(\ell)}[\mathbf{x}]\mathbf{z}^{(\ell-1)}(\mathbf{x}) + B^{(\ell)}[\mathbf{x}].$$

Example: fully connected operator $S[A_W^{(\ell)}, B_W^{(\ell)}]$ followed by an activation operator $S[A_{\sigma}^{(\ell)}, B_{\sigma}^{(\ell)}]$ is a MASO $S[A^{(\ell)}, B^{(\ell)}]$ where $[A^{(\ell)}]_{k,r,.} = W^{(\ell)T}[A_{\sigma}^{(\ell)}]_{k,r,.}$ and $[B^{(\ell)}]_{k,r} = [B_{\sigma}^{(\ell)}]_{k,r} + b_W^{(\ell)T}[A_{\sigma}^{(\ell)}]_{k,r,.}$.

Composition of MASOs

Proposition

A DN layer constructed from an arbitrary composition of fully connected/convolution operators followed by one activation or pooling operator is a MASO $S[A^{(\ell)}, B^{(\ell)}]$ such that

$$f^{(\ell)}(\mathbf{z}^{(\ell-1)}) = A^{(\ell)}[\mathbf{x}]\mathbf{z}^{(\ell-1)}(\mathbf{x}) + B^{(\ell)}[\mathbf{x}].$$

Example: fully connected operator $S[A_W^{(\ell)}, B_W^{(\ell)}]$ followed by an activation operator $S[A_{\sigma}^{(\ell)}, B_{\sigma}^{(\ell)}]$ is a MASO $S[A^{(\ell)}, B^{(\ell)}]$ where $[A^{(\ell)}]_{k,r,.} = W^{(\ell)T}[A_{\sigma}^{(\ell)}]_{k,r,.}$ and $[B^{(\ell)}]_{k,r} = [B_{\sigma}^{(\ell)}]_{k,r} + b_W^{(\ell)T}[A_{\sigma}^{(\ell)}]_{k,r,.}$.

Theorem

A DN constructed from an arbitrary composition of fully connected/convolution, activation, and pooling operators of the previous types is a composition of MASOs. Moreover, the overall composition itself an ASO.

Consequence of previous theorem:

the mapping from \mathbf{x} to $\mathbf{z}^{(\ell)}(\mathbf{x})$ is an ASO,

Consequence of previous theorem:

the mapping from \mathbf{x} to $\mathbf{z}^{(\ell)}(\mathbf{x})$ is an ASO,

 $\Leftrightarrow z^{(\ell)}(x)$ is a signal-dependent, piecewise affine transformation of x

Consequence of previous theorem:

the mapping from **x** to $\mathbf{z}^{(\ell)}(\mathbf{x})$ is an ASO,

 $\Leftrightarrow \textbf{z}^{(\ell)}(\textbf{x})$ is a signal-dependent, piecewise affine transformation of x

 \Leftrightarrow this particular affine mapping depends on which partition of the spline \bm{x} falls in $\mathbb{R}^{\mathcal{D}}$

Consequence of previous theorem:

the mapping from **x** to $\mathbf{z}^{(\ell)}(\mathbf{x})$ is an ASO,

 $\Leftrightarrow \textbf{z}^{(\ell)}(\textbf{x})$ is a signal-dependent, piecewise affine transformation of x

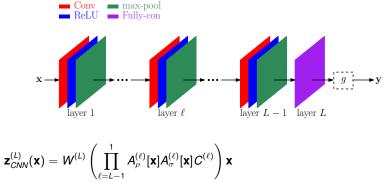
 \Leftrightarrow this particular affine mapping depends on which partition of the spline \bm{x} falls in $\mathbb{R}^{\mathcal{D}}$

(Note that in the case we use operators which are convex but not piecewise affine, we can show that such mapping can be approximated arbitrarily closely by a MASOs. In the case, the operators are not convex then the same result hold with the use of ASOs.)

(日)

Explicit input/ouput formula (1/2)

CNN affine mapping formula:

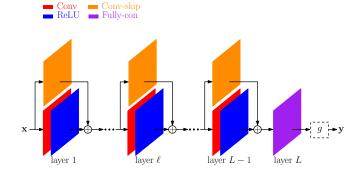


$$+ W^{(L)} \sum_{\ell=1}^{L-1} \left(\prod_{j=L-1}^{\ell+1} A^{(j)}_{\rho}[\mathbf{x}] A^{(j)}_{\sigma}[\mathbf{x}] C^{(j)} \right) \left(A^{(\ell)}_{\rho}[\mathbf{x}] A^{(\ell)}_{\sigma}[\mathbf{x}] b^{(\ell)}_{C} \right) + b^{(L)}_{W}$$

イロト イヨト イヨト イヨト

Explicit input/ouput formula (2/2)

ResNet affine mapping formula:



$$\mathbf{z}_{RES}^{(L)}(\mathbf{x}) = W^{(L)} \left(\prod_{\ell=L-1}^{1} \left(A_{\sigma}^{(\ell)}[\mathbf{x}] C^{(\ell)} + C_{skip}^{(\ell)} \right) \right) \mathbf{x} + W^{(L)} \sum_{\ell=1}^{L-1} \left(\prod_{j=L-1}^{\ell+1} \left(A_{\sigma}^{(j)}[\mathbf{x}] C^{(j)} + C_{skip}^{(\ell)} \right) \right) \left(A_{\sigma}^{(\ell)}[\mathbf{x}] b_{C}^{(\ell)} + b_{skip}^{(\ell)} \right) + b_{W}^{(L)}$$

(AI Seminar)

Spline Theory of Deep Networks

The explicit formula can be rewritten in a general form:

$$\mathbf{z}^{(L)}(\mathbf{x}) = \left(W^{(L)} A[\mathbf{x}]
ight) \mathbf{x} + \left(W^{(L)} B[\mathbf{x}] + b_W^{(L)}
ight)$$

The explicit formula can be rewritten in a general form:

$$\mathbf{z}^{(L)}(\mathbf{x}) = \left(\mathbf{W}^{(L)} \mathbf{A}[\mathbf{x}]
ight) \mathbf{x} + \left(\mathbf{W}^{(L)} B[\mathbf{x}] + b_W^{(L)}
ight)$$

 interpretation 1: z^(L)(x) is the output of bank of linear matched filters (i.e inner product of x with each row of W^(L)A[x]) + set of biases (prior probability over the classes)

The explicit formula can be rewritten in a general form:

$$\mathbf{z}^{(L)}(\mathbf{x}) = \left(\mathbf{W}^{(L)} \mathbf{A}[\mathbf{x}] \right) \mathbf{x} + \left(\mathbf{W}^{(L)} \mathbf{B}[\mathbf{x}] + \mathbf{b}_{W}^{(L)} \right)$$

- interpretation 1: z^(L)(x) is the output of bank of linear matched filters (i.e inner product of x with each row of W^(L)A[x]) + set of biases (prior probability over the classes)
- interpretation 2: hierarchical matched filters:

$$\mathbf{z}^{(L)} = W^{(L)} \max_{r^{(L-1)}} \left(A_{r^{(L-1)}}^{(L-1)} \dots \max_{r^{(2)}} \left(A_{r^{(2)}}^{(2)} \max_{r^{(1)}} \left(A_{r^{(1)}}^{(1)} \mathbf{x} + B_{r^{(1)}}^{(1)} \right) + B_{r^{(2)}}^{(2)} \right) \dots + B_{r^{(L-1)}}^{(L-1)} \right) + b_{W}^{(L)}$$

・ロット (雪) (き) (き)

The explicit formula can be rewritten in a general form:

$$\mathbf{z}^{(L)}(\mathbf{x}) = \left(\mathbf{W}^{(L)} \mathbf{A}[\mathbf{x}] \right) \mathbf{x} + \left(\mathbf{W}^{(L)} \mathbf{B}[\mathbf{x}] + \mathbf{b}_{W}^{(L)} \right)$$

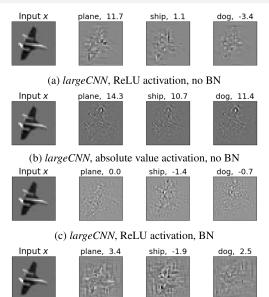
- interpretation 1: z^(L)(x) is the output of bank of linear matched filters (i.e inner product of x with each row of W^(L)A[x]) + set of biases (prior probability over the classes)
- interpretation 2: hierarchical matched filters:

$$\mathbf{z}^{(L)} = W^{(L)} \max_{r^{(L-1)}} \left(A_{r^{(L-1)}}^{(L-1)} \dots \max_{r^{(2)}} \left(A_{r^{(2)}}^{(2)} \max_{r^{(1)}} \left(A_{r^{(1)}}^{(1)} \mathbf{x} + B_{r^{(1)}}^{(1)} \right) + B_{r^{(2)}}^{(2)} \right) \dots + B_{r^{(L-1)}}^{(L-1)} \right) + b_{W}^{(L)}$$

Visualization: extract (via the backpropagation algorithm) the templates

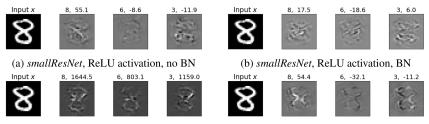
$$A[\mathbf{x}]_c = rac{d[\mathbf{z}^{(L)}(\mathbf{x})]_c}{\mathbf{x}}$$

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト



(d) largeCNN, absolute value activation, BN

Spline Theory of Deep Networks



(c) *smallResNet*, absolute value activation, no BN (d) *smallResNet*, absolute value activation, BN

See Balestriero and Baraniuk, "Mad Max: Affine Spline Insights into Deep Learning"

Spline Theory of Deep Networks

< ロ > < 同 > < 回 > < 回 >

A simple way of boosting DN performances

It is known that a matched filterbank is optimal to classify signals immersed in additive white Gaussian noise \rightarrow not realistic in practice.

A simple way of boosting DN performances

It is known that a matched filterbank is optimal to classify signals immersed in additive white Gaussian noise \rightarrow not realistic in practice.

Eldar & Oppenheim proposed to use orthogonal templates \rightarrow can be achieved in DN by penalizing non-zero off-diagonal entries in $W^{(L)}(W^{(L)})^T$ via the learning objective function:

$$\mathcal{L}_{CE} + \lambda \sum_{c_1 \neq c_2} \left| \left\langle [\boldsymbol{W}^{(L)}]_{c_1,.}, [\boldsymbol{W}^{(L)}]_{c_2,.} \right\rangle \right|^2$$

A simple way of boosting DN performances

It is known that a matched filterbank is optimal to classify signals immersed in additive white Gaussian noise \rightarrow not realistic in practice.

Eldar & Oppenheim proposed to use orthogonal templates \rightarrow can be achieved in DN by penalizing non-zero off-diagonal entries in $W^{(L)}(W^{(L)})^{T}$ via the learning objective function:

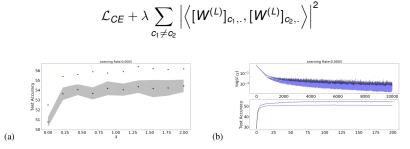
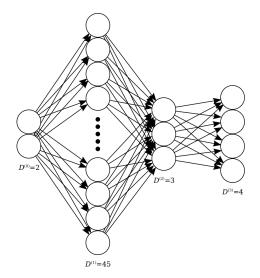


FIG. 5. Orthogonal templates significantly boost DN performance with *no change to the architecture*. (a) Classification performance of the *largeCNN* trained on CIFAR100 for different values of the orthogonality penalty λ in [5.11]. We plot the average (back dots), standard deviation (gray shade), and maximum (blue dots) of the test set accuracy over 15 runs. (b, top) Training set error. The blue/black curves corresponds to $\lambda = 0/1$. (b, bottom) Test set accuracy over the course of the learning.

Spline Theory of Deep Networks

< ロ > < 同 > < 回 > < 回 >

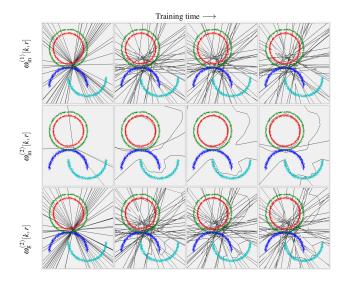
On the geometry of the partitioning



э

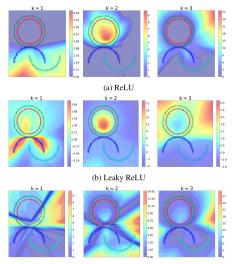
・ロト ・四ト ・ヨト ・ヨト

On the geometry of the partitioning



・ロト ・ 四ト ・ ヨト ・ ヨト

On the geometry of the partitioning



(c) Absolute value

	emina	

Spline Theory of Deep Networks

2

イロト イヨト イヨト イヨト

Conclusion - Perspectives

- MASO appear to be a well-adapted tool to study DN
- Different point of views (operator, template matched filters,...)
- Universality of MASO DNs (i.e approximation theory)
- Stability and Lipschitz constant
- Colinear template and Data set memorization
- Multiscale partitions
- Connections with Vector Quantization (information theory), K-means (statistics) and Voronoi tiling (geometry)
- new constraints on the templates
- further study of the case of non-convex activation functions
- link with wavelet theory
- approximation theory (smoothness spaces of decision boundaries, optimal approximation)

Randall Balestriero, Richard Baraniuk, "Mad Max: Affine Spline Insights into Deep Learning," arxiv.org/abs/1805.06576, 2018

3

< 日 > < 同 > < 回 > < 回 > < 回 > <