Beyond Morlet - Wavelet Methods for Analyzing Non-stationary Data

Jérôme Gilles

Department of Mathematics, UCLA jegilles@math.ucla.edu

June 11th, 2014

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Morlet wavelet analysis

Morlet wavelet:
$$\psi_{s,\tau}(t) = \frac{1}{\sqrt{s}}\psi\left(\frac{t-\tau}{s}\right)$$
 where $\psi(t) = \frac{1}{\sqrt{2\pi}}e^{-\jmath\omega_0 t}e^{-t^2/2}$
with $\omega_0 = \pi\sqrt{\frac{2}{\ln 2}} \rightarrow$ Filtering

Morlet wavelet analysis

Morlet wavelet: $\psi_{s,\tau}(t) = \frac{1}{\sqrt{s}}\psi\left(\frac{t-\tau}{s}\right)$ where $\psi(t) = \frac{1}{\sqrt{2\pi}}e^{-\jmath\omega_0 t}e^{-t^2/2}$ with $\omega_0 = \pi\sqrt{\frac{2}{\ln 2}} \rightarrow \text{Filtering}$

(ロ) (同) (三) (三) (三) (○) (○)

Morlet wavelet analysis

Morlet wavelet: $\psi_{s,\tau}(t) = \frac{1}{\sqrt{s}}\psi\left(\frac{t-\tau}{s}\right)$ where $\psi(t) = \frac{1}{\sqrt{2\pi}}e^{-\jmath\omega_0 t}e^{-t^2/2}$ with $\omega_0 = \pi\sqrt{\frac{2}{\ln 2}} \rightarrow$ Filtering

Time-frequency plane

Goal: find active "instantaneous frequencies" at a given instant τ $_{\omega\,\approx\,\frac{1}{s}}$

・ロット (雪) (日) (日)

ъ

Time-frequency plane

Goal: find active "instantaneous frequencies" at a given instant τ $_{\omega}\approx\frac{1}{s}$

But...Gabor-Heisenberg incertitude principle \rightarrow limited accuracy! (i.e we don't have access to the true instantaneous frequencies)

・ロット (雪) ・ (日) ・ (日)

Time-frequency plane

Goal: find active "instantaneous frequencies" at a given instant τ $_{\omega}\approx\frac{1}{s}$

But...Gabor-Heisenberg incertitude principle \rightarrow limited accuracy! (i.e we don't have access to the true instantaneous frequencies)

Can we access the true instantaneous information? → Empirical Wavelet Transform

イロト 不良 とくほ とくほう 一日

Empirical Wavelet Transform: concept 1/2 Useful tool: Hilbert transform applied to AM-FM signals

If
$$f(t) = F(t)\cos(\varphi(t)) \rightarrow f_{a}(t) = f(t) + \jmath \mathcal{H}(f(t)) = F(t)e^{\jmath\varphi(t)}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Useful tool: Hilbert transform applied to AM-FM signals

If $f(t) = F(t) \cos(\varphi(t)) \rightarrow f_a(t) = f(t) + \jmath \mathcal{H}(f(t)) = F(t) e^{j\varphi(t)}$ then

- instantaneous amplitude: $F(t) = |f_a(t)|$
- instantaneous frequency: $\omega(t) = \frac{d}{dt} \angle f_a(t)$

TF representation is given by the amplitude F(t) at position $(t, \omega(t))$

・ロト・日本・日本・日本・日本

Useful tool: Hilbert transform applied to AM-FM signals

If $f(t) = F(t) \cos(\varphi(t)) \rightarrow f_a(t) = f(t) + \jmath \mathcal{H}(f(t)) = F(t) e^{j\varphi(t)}$ then

- instantaneous amplitude: $F(t) = |f_a(t)|$
- instantaneous frequency: $\omega(t) = \frac{d}{dt} \angle f_a(t)$

TF representation is given by the amplitude F(t) at position $(t, \omega(t))$

Generalization

Decompose the input signal as a superposition of AM-FM waves

$$f(t) = \sum_{k=0}^{N} f_k(t)$$
 with $f_k(t) = F_k(t) \cos(\varphi_k(t))$

then retrieve all $F_k(t)$ and $\omega_k(t)$ by Hilbert transform on each $f_k(t)$ and aggregate the information on the TF plane

How to extract AM-FM components?

AM-FM wave ⇔ "mode in the frequency domain" Assumption all AM-FM waves are "sufficiently" distinct

ヘロト ヘポト ヘヨト ヘヨト

How to extract AM-FM components?

AM-FM wave ⇔ "mode in the frequency domain" Assumption all AM-FM waves are "sufficiently" distinct

- Empirical wavelets transform
 - Detect AM-FM supports

イロト イポト イヨト イヨト

How to extract AM-FM components?

AM-FM wave ⇔ "mode in the frequency domain" Assumption all AM-FM waves are "sufficiently" distinct

Empirical wavelets transform

- Detect AM-FM supports
- Build wavelet filters based on detected supports

How to extract AM-FM components?

AM-FM wave ⇔ "mode in the frequency domain" Assumption all AM-FM waves are "sufficiently" distinct

Empirical wavelets transform

- Detect AM-FM supports
- Build wavelet filters based on detected supports
- Filter input signal with the constructed family of wavelet → extract each AM-FM components

How to extract AM-FM components?

AM-FM wave ⇔ "mode in the frequency domain" Assumption all AM-FM waves are "sufficiently" distinct

Empirical wavelets transform

- Detect AM-FM supports
- Build wavelet filters based on detected supports
- Filter input signal with the constructed family of wavelet → extract each AM-FM components
- Use the Hilbert transform and build the TF representation

Example on EEG

CWT Globus Pallidus

EWT Globus Pallidus

EWT Thalamus

EWT from ECoG Motor Cortex

イロト イポト イヨト イヨト 三日

Conclusion

- EWT provides a more accurate instantaneous Time-Frequency information
- Lot of potential for brain signal analysis (reveal "hidden" patterns, frequency coupling,...)

(ロ) (同) (三) (三) (三) (○) (○)

Analysis of frequency patterns