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Abstract: Wavelet-based segmentation approaches are widely used for texture segmentation purposes because of their ability
to characterize different textures. In this paper, we assess the influence of the chosen wavelet and propose to use the recently
introduced empirical wavelets. We show that the adaptability of the empirical wavelet permits to reach better results than classic
wavelets. In order to focus only on the textural information, we also propose to perform a cartoon + texture decomposition step
before applying the segmentation algorithm. The proposed method is tested on six classic benchmarks, based on several popular
texture images.

1 Introduction

Image segmentation plays an important role in a wide variety of
tasks including medical imaging, remote sensing, industrial automa-
tion and security. Although image segmentation has been studied for
about thirty years by researchers in computer vision and mathemat-
ics, this problem is still considered as an open problem. In this paper,
we focus on the case of texture segmentation, which aims to parti-
tion an image into regions corresponding to distinct textures. Texture
segmentation is a particular case of image segmentation in the sense
that the used descriptors are very specific. Textures are important
for low-level image analysis and understanding, especially for appli-
cations like medical imaging (tumor detection), target detection
(camouflaged targets), microscopy imaging (molecule alignments).
Various supervised and unsupervised approaches try to address
the long-standing problem of texture segmentation. Each algorithm
specificity lies in the choice of the textural information descriptors.

Among all segmentation methods (and in particular for texture
segmentation), the unsupervised framework is the most difficult one
since it does not consider learning in advance a dictionary of tex-
tures involved in the problem. Hence, the only information provided
to the algorithm is the original image and a potential set of param-
eters. An unsupervised image segmentation algorithm thus relies on
the simple idea that the image itself contains the necessary informa-
tion (either in the image domain or in a transform domain) to perform
the expected segmentation. In general, an unsupervised texture seg-
mentation method can be split into two main steps (as depicted in
Figure 1): the extraction of texture feature vectors followed by a clus-
tering step.
Although human vision is pretty efficient in distinguishing different
textures, no clear formal mathematical definition of texture exists,
which makes texture segmentation a particularly challenging prob-
lem. In the recent literature, the most common strategy to segment
textures is to find an image model which supposedly to distin-
guish different textures and incorporate this model in a segmentation
framework. Such a model is usually based on the extraction of tex-
ture features which represent characteristics of textures at different
scales. Finally, some type of “energy” is computed and provided to a
clustering or any other segmentation method. Several feature extrac-
tion algorithms based on different approaches were published in the
literature. Haralick and others [1, 2] used statistical measurements to
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Fig. 1: General steps in unsupervised texture segmentation.

define co-occurence matrices in order to characterize textures. Prob-
abilistic models, especially based on Markov Random Fields (MRF),
were also proposed in [3, 4], taking advantage of the Hammersley-
Clifford theorem, the authors of [5] relate the local MRF information
to the global distribution. Such approach allows for the definition of
a global model through the local features which corresponds to char-
acterize textures at different scales. Local regularity measured by
either fractal dimension or local histogram on fuzzy regions (within
a hierarchical framework to take into account different scales) was
used to extract geometrical features in [6–8]. Because it corresponds
to the human visual system, one of the most popular approach to
extract texture features is based on Gabor wavelet filters [9–14].
Gabor filters had a lot of success for texture analysis because of their
selectivity in both scales and orientations. However, the construction
of a Gabor filter bank requires the choice of several parameters like
spatial scales, carrier frequencies and orientations. Inspired by the
scale selectivity of Gabor filters, the use of wavelets was proposed
to extract texture features [15–22]. The opportunity to choose vari-
ous basis functions for the wavelet transform permits some flexibility
regarding the type of textures that can be analyzed.

Recently, adaptive decompositions like the Empirical Mode
Decomposition (EMD) [23] have received a lot of attention in the
literature. Their purpose is to decompose a signal or an image in
an “optimized” way, i.e extracting compact harmonic modes, thus
providing more insight about the analyzed signal. Despite many
great successes in applications in different fields, the EMD method
is a purely algorithmic method and lacks mathematical foundations
which restricts us from fully understanding and predicting its non-
linear behavior. To circumvent this issue, in [24], Gilles proposed to
build an adaptive wavelet transform, called Empirical Wavelet Trans-
form (EWT). It is based on the following idea: instead of using a set
of prescribed scales like in the classic wavelet transform, the EWT
automatically finds the Fourier supports of each wavelet filter by ana-
lyzing the magnitude of the Fourier spectrum of the signal under
consideration. This approach was extended to 2D in [25] where the
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classic tensor wavelet, ridgelet and curvelet transforms were revis-
ited (as well as a new Littlewood-Paley wavelet transform) by adding
the detection of the wavelet filters supports in the 2D Fourier space.

Let us introduce some general notations that will be used through-
out the paper. Given an original gray scale image, I (normalized
between 0 and 1) of size N ×N , in the following, we denote
I(x) the intensity of I at a pixel x ∈ Ω = [1, . . . ,N ]× [1, . . . ,N ].
Extracting a texture feature vector consists in finding a vector
f(x) ∈ RK , for each pixel x ∈ Ω. The dimension K represents the
number of extracted features and generally depends on the chosen
method.

In this paper, our goal is to review wavelet-based features for
unsupervised segmentation. We focus on comparing several types
of wavelets and we explore the opportunity to use the recently
introduced 2D empirical wavelets. Since our main focus is the com-
parison of wavelets, we will use standard clustering algorithms for
the last step and do not intend to develop “optimized” clustering
approaches. The rest of the paper is organized as follows: Sec-
tions 2 and 3 are remainders of general facts about the feature
extraction step and standard clustering methods, respectively; in
Section 4, we review existing wavelet methods, as well as the new
empirical wavelets method, for texture representation; in Section 5,
we describe the unsupervised texture segmentation strategy we
used and suggest the introduction of a cartoon and texture decom-
position intermediate step to focus on the textural information;
Section 6 shows several experiments based on some well-known tex-
ture datasets and provides some benchmarks for easier comparisons;
finally, we conclude and give some perspectives in Section 7.

2 Feature extraction

The first step in an unsupervised texture segmentation procedure is
to extract a set of feature vectors f(x) ∈ RK which characterize the
texture properties. It is expected that the texture information will be
clustered making the classification easier to achieve. The construc-
tion of such feature vectors has generally two steps: the extraction of
raw features and then some post-processing in order to homogenize
the information.
In this paper, we focus on wavelet-based texture features. Wavelet-
based features are very popular in the literature because they are
easily obtained by linear filterings making them good candidates
for real-time applications. In this particular case, the raw features
correspond to the wavelet coefficients, denoted f̃(x) : Ω→ RK ,
obtained by the corresponding filter bank where K is the number
of filters.
Wavelet coefficients are generally not usable by a classifier in their
original form and need to be processed first. Let us denote f(x) ∈
RK , x ∈ Ω, the final feature vector at pixel x; and fk(x) its k−th
coordinate (k = 1, 2, . . . ,K). Let us denote E the post-processing
operator, i.e f(x) = E [f̃ ](x). In the field of wavelet-based feature
vectors, the processing mainly used is the computation of either
local energy or local entropy [26, 27]. Here, E [f̃ ]k is defined by
E [f̃ ]k(x) = W (E[f̃(x)]k) where W denotes the local mean filter,
i.e the mean filter processed over a window of a given size and cen-
tered at x (the influence of the window’s size will be investigated
in the experimental section). The operator E is defined by ∀u =
(u1, ..., uK) ∈ RK , E(u) = (u2

1, ..., u
2
K) in the local energy case

or E(u) = (−u1 log(u1), ...,−uK log(uK)) in the local entropy
case. Note that in the second case we scale the feature vector between
0 and 1 so the entropy is well-defined. The size of the used window
will be discussed in Section 6.4.1. It is worth mentioning that in [28]
the authors state that there is no clear and definitive answer on how
to choose between the energy and the entropy.
Another type of processing that had some success in texture analysis
is the Local Binary Pattern (LBP) transform, we refer the reader to
[29, 30] for full details. In this paper, we apply the LPB transform to
the wavelet coefficients at each scale, i.e E [f̃ ]k(x) = LPB[f̃k](x).
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Fig. 2: Dyadic decimated wavelet transform for k = 2.

3 Clustering algorithm

Once the final feature vectors f(x), x ∈ Ω, are obtained, the last
step consists in performing a pixel-wise clustering in order to obtain
the final segmentation. Many algorithms exist to address this prob-
lem. Most of them require a large number of parameters in order to
run a correct clustering. One must take care of the curse of high-
dimensionality which states that the larger the number of features
is, the more complicated it is to perform a relevant clustering [31].
In this study we will focus on two standard clustering algorithms,
the k-means algorithm [32] and the Nyström method which is based
on spectral-clustering [33, 34]. The choice of k-means was made
because it is a classic algorithm and is widely used in the litera-
ture. For the reader convenience, we recall that it is a centroid-based
algorithm which partition the data into Voronoi cells. The Nyström
method is a recent clustering algorithm relying on the computation of
eigenvectors of the Graph Laplacian of an affinity matrix see [33, 34]
for details. In this paper, we aim at comparing the results obtained
from these two algorithms in order to assess the influence of the clus-
tering step. Both of these algorithms require the number of expected
classes as an input parameter and we will provide this information
to the algorithms. The standard procedure is used to initialize these
algorithms: the first cluster center is chosen uniformly at random in
the feature space, after that each subsequent cluster center is cho-
sen randomly from the remaining feature vectors with probability
proportional to its distance from the point’s closest existing cluster
center (see [35] for details). For fair comparisons, the same initial-
ization is used for both the k-means and Nyström algorithms, as well
as for all wavelets families.

4 Wavelet features

This section reviews different existing wavelet methods which will
be used to extract the texture feature vectors. We refer the reader
to the two classic texts from Mallat [36] and Daubechies [37] on
wavelet analysis and its mathematical foundations. As in the previ-
ous section, we denote Ω the image domain, x = (i, j) ∈ Ω a pixel
location and we assume that all images I ∈ L2(Ω).

4.1 Standard wavelets

A wavelet decomposition of I consists in projecting I onto a family
of functions (wavelets) {Ψs,x,ΦL,x}(s,x)∈{s∈Z, s<L}×Ω. In this
paper, we will use the following convention: ΨL,x = ΦL,x in order
to simplify the notations (the wavelet family can now be written
{Ψs,x}{s∈Z,s≤L}×Ω). In practice, using a finite number of scales,
the wavelet decomposition of I is given by standard inner prod-
ucts f̃k(x) = 〈I,ΨSk,x〉,x ∈ Ω, k = 1, 2, . . . ,K. It is well known
[36, 37] that such inner products are equivalent to perform a linear
filtering with filters corresponding to each scale Sk. The most widely
used scaling factor in the literature is the dyadic case, i.e. Sk = 2k

(with our previous convention, L = 2K ). Each filters ΨSk provides
the image details lying at scale Sk, for k = 1, 2, . . . ,K − 1; while
the filter ΨSK = ΦSK provides a coarse approximation of the image
at the scale SK . The easiest approach to numerically compute such
2D wavelet decomposition is to build tensor wavelets, i.e. to perform
1D filtering along the rows and columns, respectively. Moreover, two
options exist depending on the expected type of wavelet families:
with or without decimation. Hereafter we assume a dyadic decom-
position. Let us denote h and g the digital filters corresponding
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Fig. 3: Dyadic undecimated wavelet transform for K = 2.

respectively to ΦS1
and ΨS1

. In the decimated wavelet transform,
wavelet coefficients at a given scale are obtained by applying the
same filters to a downsampled version of the output of h from the
previous scale (see Figure 2). This process is then repeated K − 1
times to obtain the K components of f̃ . The undecimated wavelet
transform follows the same process except that there is no image
downsampling between each scale. The change of scale is obtained
by dilating the filters h and g inserting zeros between each fil-
ter samples (this technique is also known as the A Trou algorithm
[38]). These two approaches have radically different properties. The
images obtained at each scale for the decimated transform have their
size divided by two compared to the previous scale, hence in order
to have all f̃ of the same size, it is necessary to perform an interpo-
lation. The most common method, and the one used in our study, is a
nearest-neighbour interpolation. Although this decimation is useful
to build orthogonal wavelet families, it has a major drawback: the
obtained transform is not translation invariant. This can be a serious
issue, especially for recognition applications like texture analysis.
The undecimated transform allows us to ignore this issue, however
it does not allow to build orthogonal bases but wavelet frames. We
recall that a family of functions {fn} defines a frame of L2(Ω) if
∃ 0 < A < B <∞, ∀v ∈ L2(Ω),

A‖v‖2L2(Ω) ≤
∑
n

|〈fn, v〉|2 ≤ B‖v‖2L2(Ω).

The frame is said to be tight if A = B and adjusted if A = B = 1
[39]. The choice of an undecimated transform over a decimated one
when performing texture analysis was already suggested in [40].

4.2 Packet extension

The decimated transform presented in the previous section may not
be the “optimal” representation, in the sense of information entropy,
of the input image. A better representation can be obtained by also
iterating the filtering process (with the same filters h and g) on each
subband and not only the coarsest one, in order to obtain a better
adapted basis. This transform is called the wavelet packet transform,
see [36, 37]. The best basis algorithm [41] builds such optimal basis
given a cost function based on the entropy. At a given scale, for each
component, the algorithm checks whether decomposing again this
component provides a representation with lower entropy or not. The
final decomposition corresponds to the one with lower entropy at
all scales. It is worth mentioning that the packet transform com-
bined with the best basis algorithm is the first data-driven wavelet
transform.

4.3 Gabor wavelets

Other very popular wavelets, especially for texture analysis, are the
2D Gabor wavelets [9, 36, 42, 43]. A family of Gabor wavelets
corresponds to an optimal filter bank in the sense that it opti-
mizes the Gabor-Heisenberg uncertainty principle. The uncertainty
principle states that a filter cannot measure accurate information
simultaneously in space and Fourier domains. Let us denote g a
two-dimensional gaussian kernel, (α1, ...αn) a vector of angles and
ω = (ω1, ω2) a 2D frequency vector. Gabor wavelets can be easily
defined in the Fourier domain by

Ψ̂s,k(ω) =
√

2sĝ(2s(ω1 − cosαk), 2s(ω2 − sinαk))

πω1 ω2 ω3 ωn ωn+1
oo

2τ1 2τ2 2τ3 2τn 2τn+1 τN

1

oo

Fig. 4: Magnitude of the Fourier spectrum segmentation and empir-
ical wavelet construction principle.

Such a wavelet family does not correspond to a basis but to a frame.
Besides the fact that physiological evidences show that the human
visual system performs a Gabor wavelets decomposition, they are
widely used in the texture analysis literature [9–14, 42, 43] because
they can extract information at different orientations.

4.4 Empirical wavelets

All wavelet families described in the previous sections correspond
to build filters with supports in the Fourier domain which follow
a prescribed scheme. More precisely, the positions and sizes of
these Fourier supports depend on the choice of the scaling scheme,
and therefore correspond to a prescribed partitioning of the Fourier
domain. For instance, in 1D, the dyadic case is equivalent to divide
the lowpass filter support by a factor two at each scale. The draw-
back of such fixed partitioning approach is that nothing guarantees
that a harmonic mode will fall within a prescribed support, resulting
in the separation of frequencies which are contributing to the same
information. To circumvent this issue, in [24], the author proposes
to build data-driven wavelets in order to capture harmonic modes
with compact supports in the Fourier domain. Such an approach can
be easily extended to 2D in different ways (tensor, Littlewood-Paley
wavelets, curvelets) for image processing purposes. In this paper,
we propose to use empirical wavelets features to better capture tex-
ture characteristics. In the following sections, we briefly sum up how
empirical wavelets are constructed.

4.4.1 1D Case: For the reader’s convenience, we start with
a presentation of the 1D empirical wavelet transform (EWT). As
described above, the aim of empirical wavelets is to separate har-
monic modes of compact supports in the Fourier domain. The
advantage is that the family of wavelets that results from it is driven
by the information contained in the analyzed signal. To perform such
decomposition, the first step consists in segmenting the magnitude of
the Fourier spectrum of the input signal to find supports of meaning-
ful harmonic modes. The Littlewood-Paley type wavelet filters are
built upon the detected supports. Finally, the input signal is filtered
by the obtained wavelet filter bank. Note that in 1D, the Hilbert trans-
form can be applied to each component to extract the instantaneous
amplitudes and frequencies providing an accurate time-frequency
representation (see [24]).
Assuming that the magnitude of the Fourier spectrum has N modes
and denoting ω the frequency (scaled between 0 and π), we define
the set of (ordered) boundaries of each supports (see Figure 4) by
(ωn)n∈[0,...,N ] ∈ [0, π] taking the convention ω0 = 0 and ωN = π.
In [24] and [25], the authors originally proposed different options to
perform such boundary detection where the number of modes, N ,
was supposed to be known. More recently, a parameterless method
(i.e. which automatically detects the number of meaningful modes)
was proposed in [44] and we will use this approach throughout this
paper. Based on this set of boundaries and defining transition areas
(illustrated by the shaded areas in Figure 4), the Littlewood-Paley
filters are then easily defined in the Fourier domain by

Φ̂n(ω) =


1 if |ω| ≤ ωn − τn
cos
[
π
2 β
(

1
2τn

(|ω| − ωn + τn)
)]

if ωn − τn ≤ |ω| ≤ ωn + τn
0 otherwise

(1)
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and

Ψ̂n(ω) =



1 if ωn + τn ≤ |ω| ≤ ωn+1 − τn+1

cos
[
π
2 β
(

1
2τn+1

(|ω| − ωn+1 + τn+1)
)]

if ωn+1 − τn+1 ≤ |ω| ≤ ωn+1 + τn+1

sin
[
π
2 β
(

1
2τn

(|ω| − ωn + τn)
)]

if ωn − τn ≤ |ω| ≤ ωn + τn
0 otherwise.

(2)
The function β is a function observing the following conditions:
∀x ∈ [0, 1] , β(x) + β(1− x) = 1; ∀x ∈ R, x ≥ 1, β(x) = 1 and
∀x ∈ R, x ≤ 0, β(x) = 0. A popular choice is given by β(x) =
x4(35− 84x+ 70x2 − 20x3) (see [37]). It is proven in [24] that,
by properly choosing the coefficients τn, the resulting wavelet
family forms an adjusted tight frame.

4.4.2 2D Extension: In [25], the authors extend the EWT to
several two-dimensional transforms for image processing purposes;
in this paper, we will use them to extract texture features. In this
section we recall four approaches which correspond to different par-
titioning of the Fourier domain. We refer the reader to [25] for more
details and examples.

Tensor case (EWT2DT): Like the classic 2D tensor wavelet trans-
form, two sets of 1D empirical wavelets, {Ψrn} and {Ψcn} are used to
process the rows and columns, respectively. The horizontal (vertical)
set of filters is based on the boundaries detected on the spectrum cor-
responding to the average of all 1D row (column) spectra. Hence the
set of 2D filters, {ΨTnm(x)}, is defined by the product of 1D filters
(we denote x = (x, y)): ΨTnm(x) = Ψrn(x)Ψcm(y). An example of
the obtained partition in the Fourier domain of a simulated image is
given in the top-right image of Figure 5.

Littlewood-Paley case (EWT2DLP): In some image processing
tasks, it can be more interesting to only focus on different scales
and not pay attention to the orientations. The Littlewood-Paley fil-
ters aim at extracting components lying in specific scale ranges (with
no preferred direction), such filters are supported over concentric
rings (centered at the origin). Building empirical Littlewood-Paley
wavelets is then equivalent to detect the radii of each rings. This
can be efficiently achieved by using the polar Fourier domain [45]
since the same detection method used for tensor wavelets can be
reused. If we denote ω = (ωx, ωy) the 2D frequency vector, then
the Littlewood-Paley wavelets are defined in the Fourier domain by
ΨLPn (ω) = Ψn(|ω|) where Ψn are defined by (1) and (2). The left
image in the second row of Figure 5 illustrates the obtained partition
in the Fourier domain on the synthetic image used in the previous
section.

Curvelet: The Littlewood-Paley construction described in the
section above does not take into account orientations which are gen-
erally important information in images (especially for textures). In
order to consider the orientation information, empirical wavelets can
be built following the same philosophy as in the curvelet transform,
providing an empirical curvelet transform (EWT2DC). The idea con-
sists in partitioning the Fourier domain into angular sectors. Two
options were initially proposed in [25]: finding a set of global angu-
lar sectors which are scale independent (EWT2DC1) or finding a set
of angular sectors per ring of scales (EWT2DC2). We also add a
third option (EWT2DC3) which finds a set of scale radii per angu-
lar sectors. Again, the detection can be easily performed in the polar
Fourier domain. The right image of the second row and images of the
third row of Figure 5 correspond to the EWT2DC1, EWT2DC2 and
EWT2DC3 partitions on the same synthetic example, respectively.

simulated image Tensor

Littlewood-Paley Empirical Curvelet 1

Empirical Curvelet 2 Empirical Curvelet 3

Fig. 5: Fourier partitions corresponding to the different 2D empiri-
cal wavelets.

5 Unsupervised texture segmentation algorithm

In most cases, images contain finite regions with or without several
types of textures. The purpose of image segmentation is to extract
those different regions, i.e if we denote Ω the image domain, we want
to find a set {Ωi} such that ∀i,Ωi ⊂ Ω, ∀i 6= j,Ωi ∩ Ωj = ∅ and
Ω =

⋃
i Ωi. One challenging aspect of building feature vectors to

characterize different regions is that those without textures are very
different from regions with textures and the same type of feature
vectors can fail to represent both types of regions. One solution to
alleviate this problem relies on the fact that regions without textures
do not contain details and thus should be mainly contained in the low
frequency component of a wavelet decomposition. If at first glance
such low frequency component seems to be sufficient to distinguish
different non-textured regions, it is generally not accurate because
such low frequency component is a very smooth function and does
not contain regions with sharp boundaries. A better approach, ini-
tially suggested in [46, 47], is to first decompose the input image
into its cartoon and texture parts and then use specialized algorithms
on each parts to eventually fusion the extracted information to get
a unique final segmentation. In this paper, since we focus on tex-
ture segmentation, we first decompose the input image in its cartoon
and texture parts and segment only the latter. We will not use the
information contained in the cartoon part. The process we put for-
ward is summarized in Figure 6. The following sections describe the
cartoon-texture decomposition model used in this paper and the final
segmentation process used on the texture parts.
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Fig. 6: Global segmentation strategy.

5.1 Cartoon + Texture decomposition

As mentioned above, we focus only on the texture segmentation,
thus we choose to first decompose the input image into its cartoon
and texture parts and segment only the latter. Such decomposition
models were widely studied in the last decade after the seminal
work of Meyer [48]. This work has its roots in the famous Rudin-
Osher-Fatemi (ROF) [49–51] model. It minimizes a total variation
(TV) based functional in order to remove the details in the image
while keeping objects with sharp edges, i.e providing a cartoon ver-
sion of the image. Meyer showed that the difference between the
input image and its cartoon version does not necessarily contains all
the expected details, more specifically some oscillatory (i.e textural)
information can be lost. Thus he introduced a space of oscillating
functions, denoted G to model the textures, that he used in a mod-
ified version of the ROF model. If we denote I the input image,
u and v the cartoon and texture components parts, respectively, the
decomposition model consists in solving

(û, v̂) = arg min
u∈BV,v∈G

‖u‖TV + µ‖v‖G, (3)

subject to I = u+ v.

The space BV is the space of functions of bounded variations and
is characterized by the semi-norm ‖u‖TV = ‖∇u‖1. The total vari-
ation will be small when u is a cartoon component (i.e a piecewise
like function) while the G−norm will be small when v is a high
oscillating function, the parameter µ controls the frontier between
the two spaces (we refer the reader to [48] for more details). Such
models and their properties were widely investigated in the literature
[52–56]. In particular, the most handful formulation is given by

(û, v̂) = arg min
u∈BV,v∈Gµ

‖u‖TV + J∗
(
v

µ

)
+
λ

2
‖I − (u+ v)‖22,

(4)

where Gµ = {v ∈ G|‖v‖G ≤ µ} and J∗ is the characteristic func-
tion overG1, i.e J∗(v) = 0 if v ∈ G1 and J∗(v) = +∞ otherwise.
The advantage of this formulation is that it can be easily solved
numerically. In this paper, we used the algorithm described in [53] to
perform all our experiments. Limited literature discusses the choice
of the parameters µ and λ. Empirically, µ controls the sensibility
to the frequential part, the smaller µ the more oscillating the tex-
tures are; while λ controls the regularization of the cartoon part.
Following the work of [52], we choose to set µ = N

2 (we recall that
N is the image size). On the other hand, we fixed λ =

ωr1
2 , where

(ωrn)n∈[0,...,N ] is the family of radii identified in Section 4.4.2.
Figure 7 provides an example of the obtained decomposition of two
images from the Outex dataset.

5.2 Wavelet based segmentation of the texture part

The last step consists in computing the final segmentation from the
texture part. Here, we use wavelet features to characterize the tex-
tural information and follow the method described in Section 2.
Because the texture part contains mainly frequency information we
will only use the bandpass wavelet filters to build the feature vec-
tors associated with each pixels (including the post-processing). In
other terms, we use only the filters {Ψn} for n ≥ 1 and get rid of
Ψ0 = Φ0. As described earlier, whatever wavelet transform is cho-
sen, it is always equivalent to building a feature vector f(x) ∈ RK
(the ordering of the wavelet filters does not have any influence on the
segmentation process since it only corresponds to reorder the feature
space. The obtained feature vectors are finally used to feed one of

Image Cartoon Texture

Fig. 7: Cartoon and texture components.

the clustering algorithm described in Section 3 in order to obtain the
segmentation of the texture part.

6 Experiments

6.1 Algorithm options

In this section, we present the obtained results when applying the
algorithm described in the previous section. We test all possible
combinations according to the following options:

• the wavelet transform:
◦ undecimated standard wavelet transform for Coiflet, Daubechies,
Symmlet wavelets,
◦ decimated standard wavelet transform for Coiflet, Daubechies,
Symmlet wavelets,
◦ Packet wavelet transform for Coiflet, Daubechies, Symmlet
wavelets,
◦ Gabor wavelets,
◦ Meyer wavelets,
◦ Curvelets,
◦ EWT2DT,
◦ EWT2DLP,
◦ EWT2DC1, EWT2DC2, EWT2DC3,
• the feature extraction method: Energy, Entropy or LBP,
• the final clustering method: k-means or Nyström,
• the clustering associated distance: Euclidean (`2), cityblock (`1),
correlation or cosine.

6.2 Datasets description

In order to assess the efficiency of the different wavelet features,
we built a large variety of test images by using textures from four
popular texture datasets: Outex [57], Brodatz [58], ALOT [59] and
UIUC [60]. The Outex dataset already has a hundred composite tex-
ture images. They are generated by mixing twelve different texture
images according to the regions depicted by the ground-truth images
shown in the top-left row of Figure 8. For each other datasets, we
built similar sets of test images following the same procedure: we
selected thirteen pristine textures and randomly composed a hun-
dred test images using the different ground-truth images given on
the top row of Figure 8. The size of all test images is 512× 512
pixels and are encoded on 256 gray levels. Moreover, the total num-
ber of regions is known and depends on the used ground-truth, this
information is provided to the clustering algorithms.

6.3 Benchmark Criteria

We test the algorithm on the test sets described above in order to
compare the performance of different wavelet features. Different
approaches to compare segmentation results were proposed in the
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Fig. 8: The different used ground-truths (top row) and some corre-
sponding test image samples (bottom row).

literature, each one corresponding to different interpretations of the
notion of partition. A partition which evaluates the true boundaries
of the image can be defined as a boundary-based interpretation.
The pairs-of-pixels interpretation consists in classifying (into two
classes) all pairs of pixels as belonging to the same cluster or not.
The most used metric is the region-based interpretation which con-
siders regions made of segmented pixels. We refer the reader to the
review paper [61] for further insights.
In this paper, we choose to use the region-based interpretation.
The following subsections describe different metrics associated with
such approach and used in our experiments. The reader is referred
to [61–63] for more details and interpretations of these metrics.
In what follows we consider gray scale textured images. We also
assume that we have access to the ground-truth segmentation. We
will denote I the original (test) image, N 2 its number of pix-
els, PG = {R′1, ..., R′N} the ground-truth segmentation and PS =
{R1, ..., RN} the obtained segmentation where N is the number
of clusters. Given a region R, |R| will denote its cardinality, i.e the
number of pixels in the regionR. All these metrics provide a number
between 0% and 100%, the latter corresponding to perfect seg-
mentation. The scores provided in the Results section, Section 6.4,
correspond to the sum of all these metrics divided by the number of
metrics. All these metrics are computed via the eval_segm function
available in the SEISM Toolbox∗.

6.3.1 Normalized Variation of Information: In [64], the vari-
ation of information was introduced to measure the information
difference between two clusterings. The author uses the entropy,
H(PS), and mutual information, I(PS ,PG), of segmentations to
define the so-called Variation of Information (see [64] for all details)

V oI(PS ,PG) = H(PS) +H(PG)− 2I(PS ,PG). (5)

This quantity can be normalized by logN to get the Normalized
Variation of Information (NVOI) metric. Although this method
gives some interesting theoretical properties, its perceptual meaning
is still unclear.

6.3.2 Swapped Directional Hamming Distance: The basic
idea of this metric is to evaluate the similarity between regions from
two segmentations by finding the region R with the maximum over-
lap for each region R′ from the ground-truth segmentation. The
directional Hamming distance [65] from a partition PS to a partition
PG is then defined as

DH(PS ⇒ PG) = N 2 −
∑

R′∈PG

max
R∈PS

|R′ ∩R|. (6)

The Swapped Directional Hamming Distance (SDHD) corre-
sponds to DH(PG ⇒ PS).

∗https://github.com/jponttuset/seism

6.3.3 van Dongen Distance: The van Dogen (VD) distance
[66] is a symmetric extension of the directional Hamming distance:

dvD(PS ,PG) = DH(PS ⇒ PG) +DH(PG ⇒ PS) (7)

6.3.4 Swapped Segmentation Covering: The overlap between
two regions can be used to assess the pixel-wise classification in a
recognition task [67]. It is defined as

O(R,R′) =
|R ∩R′|
|R ∪R′| . (8)

In [68], the author defines the covering of a segmentation PS by a
segmentation PG as

C(PG ⇒ PS) =
1

N 2

∑
R∈PS

|R| · max
R′∈PG

O(R,R′). (9)

The swapped segmentation covering (SSC) is defined by C(PS ⇒
PG).

6.3.5 Bipartite Graph Matching: The Bipartite Graph Match-
ing (BGM) metric aims to measure the maximum overlap between
regions of two segmentations by using a bijective matching method.
The two given partitions PS and PG are seen as one common set
of nodes {R1, ...RN} ∪ {R′1, ...R′N} in a graph where an edge is
inserted between each pair of nodes with a certain weight. Given
such graph, the sum of all weights, denoted w, can be used to define
the maximum-weight bipartite graph matching measure

BGM(PS ,PG) = 1− w

N 2
. (10)

We refer the reader to [69] for more details on this metric and [70]
for the optimization procedure used to obtain w.

6.3.6 Bidirectional Consistency Error: In [71], the author pro-
posed a measure that does not tolerate refinement to oversegmenta-
tion. This measure, the Bidirectional Consistency Error (BCE) is
defined by

BCE(PS ,PG) = 1− (11)

1

N
∑
R∈PS
R′∈PG

|R ∩R′|min

{
|R ∩R′|
|R| ,

|R ∩R′|
|R′|

}
.

6.4 Results

In this section, we experimentally investigate the influence of the
different options (window’s kernel size, post-processing, clustering
method and type of wavelet). Except in the last section, we only
used a subset of possible wavelets in order to reduce the amount of
computation. Curvelets, Gabor wavelets and Empirical wavelets are
used to test the influence of the kernel’s size while only Curvelets
and Empirical Curvelets are used to test the post-processing and
clustering method influence. We choose these wavelets because we
expect them to be the best families based on their properties in terms
of adaptability and how they characterize the geometrical informa-
tion. The last section will present a broader comparison using other
families of wavelets and will confirm this choice.

6.4.1 Influence of the window’s kernel size: We first inves-
tigate the choice of the window’s kernel size used by the post-
processing operation during the wavelet feature extraction step. No
theoretical results exist regarding a potential optimal window size
and it is usually empirically chosen. Therefore, we first ran the
algorithm for the wavelet subset selected above using the k-means
clustering (the cityblock distance was used) on the ALOT, UIUC,
Outex and Brodatz datasets. We computed the average of all pre-
viously defined metrics. These experiments provided us the results
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Table 1 ALOT: influence of the window’s kernel size

Wavelet
Size 3 5 7 9 11

Curvelet 73.78 73.78 74.55 75.07 75.35
EWTC1 69.05 72.64 74.85 76.26 77.55
EWTC2 69.15 72.72 74.45 76.65 77.63
EWTC3 68.71 70.38 71.29 72.58 72.71

EWT2DT 70.01 74.43 76.42 76.58 77.39
Gabor 73.03 73.80 75.59 77.44 78.07

Wavelet
Size 13 15 17 19 21

Curvelet 75.86 75.69 75.49 75.45 76.38
EWTC1 78.43 78.40 79.03 78.68 78.26
EWTC2 78.02 78.46 78.05 78.70 78.67
EWTC3 72.35 73.41 72.97 72.99 72.65

EWT2DT 78.55 78.06 78.09 78.60 78.25
Gabor 78.60 78.26 78.62 78.49 78.67

Wavelet
Size 23 25 27 29 31

Curvelet 75.23 75.90 75.63 75.16 75.39
EWTC1 78.53 78.25 77.75 77.05 77.79
EWTC2 77.50 78.38 77.91 76.45 76.83
EWTC3 72.31 72.25 71.42 71.30 71.33

EWT2DT 77.82 77.89 77.08 76.63 76.03
Gabor 77.68 78.89 78.01 78.09 77.40

Table 2 UIUC: influence of the window’s kernel size

Wavelet
Size 3 5 7 9 11

Curvelet 74.02 74.99 75.58 76.47 76.71
EWTC1 65.10 70.56 72.85 74.91 75.96
EWTC2 64.87 69.45 71.65 74.35 75.28
EWTC3 72.70 75.61 76.47 77.06 77.77

EWT2DT 52.67 59.42 63.19 65.93 67.94
Gabor 64.28 65.30 66.82 68.29 69.87

Wavelet
Size 13 15 17 19 21

Curvelet 76.81 77.04 76.96 77.01 77.59
EWTC1 76.93 77.58 77.84 78.17 78.40
EWTC2 76.36 77.25 77.57 77.40 77.82
EWTC3 77.60 77.93 78.04 78.11 78.00

EWT2DT 69.47 70.28 71.17 71.65 72.09
Gabor 71.20 72.03 72.89 73.09 73.48

Wavelet
Size 23 25 27 29 31

Curvelet 77.23 77.52 77.35 77.55 77.46
EWTC1 78.54 78.20 78.11 78.33 78.21
EWTC2 77.76 77.89 77.97 78.03 77.79
EWTC3 77.97 78.23 77.86 77.91 77.52

EWT2DT 72.31 72.54 72.82 72.68 72.56
Gabor 73.78 74.11 74.05 73.95 73.97

given in Tables 1, 2, 3 and 4. If some variations appear between the
different datasets, we can observe that a kernel size in the range of 19
to 25 gives the best results. Moreover, we see that the optimal size is
almost constant within a given dataset. In the next experiments, we
will use the optimal sizes we found for each dataset: 19 for ALOT
and Outex, 25 for UIUC and Brodatz.

6.4.2 Influence of the post-processing: Next, we want to
study the influence of the post-processing option: energy, entropy
or LBP (see Section 2). Using the appropriate kernel sizes found in
Section 6.4.1 and choosing 35 for the LBP (since LBPs are very long
to compute, we run some computations on a smaller subset of images
to find that this value gives the best results), we ran the segmentation
algorithm with the k-means clustering (the cityblock distance was
used) for the wavelets subset defined before and computed the aver-
age metric for each case. Table 5 presents the results obtained for
the ALOT, UIUC, Brodatz and Outex datasets, respectively. We eas-
ily observe that the energy option provides the best results for all
types of wavelet for all datasets. Therefore, in the next sections, we
will only use the energy option in the extraction of feature vectors.

6.4.3 Influence of the clustering method: We now investi-
gate the influence of the chosen clustering algorithm in the final
step. Thus, we assessed the obtained segmentations, using the energy

Table 3 Brodatz: influence of the window’s kernel size

Wavelet
Size 3 5 7 9 11

Curvelet 68.88 70.48 71.65 72.15 72.41
EWTC1 66.79 70.88 73.05 75.16 76.33
EWTC2 67.10 70.83 73.56 75.22 76.42
EWTC3 69.57 73.34 73.70 75.11 75.33

EWT2DT 68.97 73.54 75.76 76.98 77.50
Gabor 68.80 70.03 71.63 73.13 74.07

Wavelet
Size 13 15 17 19 21

Curvelet 72.94 72.88 73.93 74.32 74.67
EWTC1 76.28 75.96 76.45 77.14 76.98
EWTC2 76.91 76.37 77.25 76.93 77.89
EWTC3 74.37 73.31 75.81 76.32 76.27

EWT2DT 78.21 78.52 78.13 78.47 78.83
Gabor 75.14 76.44 77.41 77.82 77.91

Wavelet
Size 23 25 27 29 31

Curvelet 75.10 75.39 75.29 75.38 75.40
EWTC1 77.58 77.72 77.72 77.57 76.58
EWTC2 77.66 77.95 77.63 77.15 76.24
EWTC3 75.81 75.71 75.53 75.43 75.08

EWT2DT 78.58 78.41 78.24 77.60 77.12
Gabor 78.62 78.34 78.67 78.79 78.51

Table 4 Outex: influence of the window’s kernel size

Wavelet
Size 3 5 7 9 11

Curvelet 81.63 82.58 82.78 83.02 83.51
EWTC1 76.84 80.12 81.69 82.03 83.44
EWTC2 77.31 80.02 82.01 82.70 83.48
EWTC3 77.37 79.62 80.62 80.88 81.53

EWT2DT 73.55 78.27 80.08 81.68 82.51
Gabor 77.70 78.75 80.36 81.49 82.77

Wavelet
Size 13 15 17 19 21

Curvelet 83.37 83.57 83.95 85.02 84.00
EWTC1 83.92 84.06 86.30 87.24 86.61
EWTC2 83.97 84.34 86.13 86.98 86.34
EWTC3 82.47 82.83 83.38 83.66 83.30

EWT2DT 83.12 83.68 84.03 83.98 83.90
Gabor 83.60 84.44 84.31 85.58 84.87

Wavelet
Size 23 25 27 29 31

Curvelet 83.67 83.76 84.01 83.49 83.30
EWTC1 84.33 84.51 83.92 83.04 83.11
EWTC2 84.34 84.18 83.93 83.58 83.35
EWTC3 83.39 82.84 82.80 82.80 82.09

EWT2DT 83.43 83.54 82.87 82.88 82.39
Gabor 84.76 85.02 84.76 84.80 84.68

post-processing and previously found kernel sizes, for the different
clustering methods. The results are summarized in Table 6 for the
ALOT, UIUC, Brodatz and Outex datasets, respectively. We observe
that, except for the ALOT dataset where the Nyström clustering com-
bined with the cityblock distance gives the best results, the k-means
approach with the cityblock distance provides the best performances
among all options whatever the type of wavelets. This could be
explained by the fact the cityblock distance is based on the L1 norm
which is less sensitive to outliers than other distances. Therefore, we
will restrict our last experiments by using only this clustering option.

6.4.4 Influence of the type of wavelet: Finally, we evaluate
the influence of the chosen wavelet using only the energy processing
with the corresponding kernel sizes and the k-means clustering with
cityblock distance. Table 7 shows the performances corresponding
to each wavelet transforms for the Outex, Brodatz, ALOT and UIUC
datasets, respectively. The metrics NVOI, SCC, SDHD, BGM, VD
and BCE are averaged among the entire set of test images. Since
in this paper we do not consider any specific application, we only
provide the mean and standard deviation (within parenthesis) values
computed among the six metrics. The first observation is that clas-
sic wavelet families like DWT, Undecimated and Packets give the
worst performances. This is not surprising since these transforms do
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Table 5 Influence of the post-processing

Wavelet
Post Proc. Entropy Energy LBP

ALOT Dataset
Curvelet 74.43 75.45 48.74
EWTC1 72.13 78.68 76.84
EWTC2 70.13 78.70 76.06
EWTC3 69.27 72.99 71.98

UIUC Dataset
Curvelet 75.97 77.52 43.17
EWTC1 75.71 78.20 70.10
EWTC2 75.75 77.89 70.45
EWTC3 72.12 78.23 71.09

Brodatz Dataset
Curvelet 74.94 75.39 37.01
EWTC1 74.52 77.72 72.46
EWTC2 74.51 77.95 73.78
EWTC3 69.93 75.71 69.97

Outex Dataset
Curvelet 83.72 85.02 56.69
EWTC1 78.92 87.24 82.38
EWTC2 79.05 86.98 81.74
EWTC3 77.07 83.66 80.74

Table 6 Influence of the clustering method

Clust.
Wavelet Curvelet EWTC1 EWTC2 EWTC3

ALOT Dataset
kmeans_euclidean 71.57 71.98 71.90 67.89
kmeans_cityblock 75.45 78.68 78.70 72.99
kmeans_cosine 71.09 70.32 70.49 67.94

kmeans_correlation 72.66 69.87 70.16 67.98
nystrom_euclidean 73.16 75.91 75.68 71.70
nystrom_cityblock 68.69 79.29 79.09 74.61
nystrom_cosine 67.91 65.90 66.94 63.53

nystrom_correlation 69.11 66.11 66.85 63.82

UIUC Dataset
kmeans_euclidean 70.10 75.23 74.04 76.01
kmeans_cityblock 77.52 78.20 77.89 78.23
kmeans_cosine 74.71 77.56 77.45 78.04

kmeans_correlation 75.01 77.68 77.19 78.71
nystrom_euclidean 69.18 75.86 74.99 76.86
nystrom_cityblock 64.99 77.92 78.16 78.45
nystrom_cosine 70.94 75.30 74.54 75.18

nystrom_correlation 75.01 75.38 74.10 75.54

Brodatz Dataset
kmeans_euclidean 70.15 72.61 73.06 72.32
kmeans_cityblock 75.39 77.72 77.95 75.71
kmeans_cosine 70.58 70.96 72.31 70.61

kmeans_correlation 73.85 71.26 71.89 70.39
nystrom_euclidean 68.69 72.98 73.49 72.33
nystrom_cityblock 64.98 77.50 77.61 75.50
nystrom_cosine 65.16 65.71 67.30 64.49

nystrom_correlation 67.17 66.02 67.27 65.17

Outex Dataset
kmeans_euclidean 78.62 80.02 80.03 75.64
kmeans_cityblock 85.02 87.24 86.98 83.66
kmeans_cosine 80.10 83.29 83.86 81.00

kmeans_correlation 80.70 83.14 82.62 81.08
nystrom_euclidean 78.12 81.00 81.73 77.30
nystrom_cityblock 75.64 85.71 85.91 82.71
nystrom_cosine 76.23 77.74 77.59 76.05

nystrom_correlation 76.42 78.61 78.06 75.85

not take into account the presence of geometry which we know is an
important information to characterize textures.
We can notice that, for the Outex dataset, the EWT2DC1 family
gives the best performances, closely followed by EWT2DC2 and the
classic Curvelets. In the case of the Brodatz dataset, the EWT2DT
performs slightly better than Gabor, EWT2DC1 and EWT2DC2
(also note that Gabor wavelets performs better than the classic
curvelets). Results from the EWT2DC1 for the ALOT dataset are

Table 7 Datasets benchmark result

Wavelet Outex Brodatz ALOT UIUC
Curvelet 85.02(4.93) 80.11(7.83) 79.74(8.43) 78.58(7.18)
EWTC1 87.24(7.94) 81.04(9.92) 81.51(9.94) 79.32(9.81)
EWTC2 86.98(8.15) 81.09(9.88) 81.30(9.54) 78.64(9.82)
EWTC3 83.66(11.31) 76.63(14.31) 74.97(13.41) 74.36(15.81)
EWTLP 61.55(11.19) 65.00(13.64) 73.01(12.41) 55.71(13.00)

EWT2DT 82.60(7.50) 84.01(10.20) 81.26(10.11) 73.75(11.400
Gabor 81.16(7.49) 82.23(10.58) 80.30(10.53) 73.69(9.80)

Meyer_2 72.68(7.08) 75.24(10.04) 76.56(10.13) 61.34(9.16)
Meyer_3 75.60(6.42) 81.33(8.73) 79.50(9.01) 71.53(9.29)
Meyer_4 75.97(7.17) 80.97(8.86) 80.48(8.37) 76.01(8.29)

Discrete Wavelet Transform (DWT)
Coif1_2 68.70(7.60) 72.05(9.70) 73.19(9.61) 59.53(8.87)
Coif1_3 70.84(7.13) 78.31(7.94) 76.17(8.60) 68.37(8.48)
Coif1_4 68.87(7.68) 77.15(8.05) 75.85(8.26) 68.67(8.20)
Coif2_2 69.33(7.40) 72.48(9.73) 73.38(9.69) 59.42(8.98)
Coif2_3 71.54(7.05) 78.09(8.17) 76.24(8.78) 68.22(8.34)
Coif2_4 69.57(7.61) 77.50(7.82) 76.54(8.43) 69.29(8.07)

Daub4_2 68.80(7.56) 73.98(9.89) 74.51(9.74) 60.23(9.05)
Daub4_3 72.36(7.90) 80.48(8.74) 77.68(8.80) 71.76(9.60)
Daub4_4 72.52(7.68) 80.28(7.86) 77.35(8.73) 75.62(8.28)
Daub6_2 69.59(7.34) 73.77(10.00) 74.54(9.89) 60.57(9.18)
Daub6_3 73.08(7.34) 80.96(8.41) 77.32(9.11) 71.80(9.26)
Daub6_4 73.57(7.14) 80.12(7.96) 77.41(8.50) 76.43(8.03)
Sym4_2 70.00(7.62) 73.33(9.89) 74.38(9.66) 60.33(9.08)
Sym4_3 72.72(7.09) 80.06(8.40) 77.53(8.83) 70.52(8.83)
Sym4_4 71.40(7.33) 79.53(7.88) 77.22(8.43) 72.81(8.08)
Sym5_2 69.60(7.12) 72.37(9.58) 73.63(9.49) 59.26(8.74)
Sym5_3 71.58(7.06) 77.80(8.06) 75.85(8.58) 67.77(8.14)
Sym5_4 69.39(7.99) 76.82(8.10) 76.03(8.43) 69.23(8.20)

Undecimated Wavelet Transform
Coif1_2 63.82(7.78) 72.33(9.67) 72.66(10.30) 58.37(8.48)
Coif1_3 60.88(9.31) 69.84(9.30) 74.00(9.87) 60.22(8.63)
Coif1_4 59.91(11.89) 68.75(9.38) 73.55(10.23) 60.48(8.63)
Coif2_2 64.05(7.91) 71.92(9.71) 72.66(10.22) 58.12(8.44)
Coif2_3 61.52(9.57) 69.64(9.31) 73.57(9.42) 59.70(8.32)
Coif2_4 60.22(12.04) 68.73(9.74) 72.05(9.95) 60.77(8.60)

Daub4_2 62.81(8.32) 73.50(10.20) 74.02(9.95) 58.96(8.97)
Daub4_3 61.57(9.45) 72.12(9.63) 75.19(9.77) 64.38(9.36)
Daub4_4 63.11(9.89) 71.95(9.34) 75.29(8.95) 67.84(8.72)
Daub6_2 64.47(8.46) 73.79(10.18) 74.67(9.93) 59.16(8.82)
Daub6_3 63.39(9.12) 72.43(9.76) 75.99(9.57) 64.20(9.01)
Daub6_4 64.34(9.88) 72.26(9.23) 75.39(9.15) 67.72(8.52)
Sym4_2 64.95(8.17) 72.87(10.00) 73.97(9.84) 58.93(8.76)
Sym4_3 62.87(9.47) 71.12(9.50) 74.56(9.45) 61.77(8.69)
Sym4_4 61.83(11.55) 69.82(9.35) 73.49(9.53) 63.37(8.61)
Sym5_2 63.64(7.66) 71.58(9.74) 73.58(9.50) 58.06(8.61)
Sym5_3 61.51(9.57) 68.93(9.17) 73.21(9.31) 59.08(8.16)
Sym5_4 59.72(12.00) 68.47(9.55) 72.09(9.94) 60.26(8.53)

Wavelet Packet Transform
Coif1_2 70.97(7.63) 74.50(10.22) 69.36(9.89) 57.28(8.60)
Coif1_3 74.19(5.93) 75.21(9.18) 71.99(9.44) 62.75(8.11)
Coif1_4 68.47(6.52) 69.04(8.64) 66.12(7.94) 62.65(8.42)
Coif2_2 71.75(7.64) 74.19(10.11) 69.50(9.96) 57.36(8.83)
Coif2_3 74.76(5.91) 75.35(9.09) 71.65(9.27) 63.05(8.28)
Coif2_4 66.39(7.08) 67.80(8.84) 64.83(7.99) 61.61(8.48)

Daub4_2 70.50(8.21) 74.98(10.46) 69.64(10.61) 57.12(8.75)
Daub4_3 78.23(7.21) 77.24(10.08) 74.73(10.85) 64.53(8.93)
Daub4_4 80.74(7.22) 80.63(9.57) 76.87(10.89) 71.41(9.06)
Daub6_2 72.42(8.09) 74.76(10.83) 70.44(10.25) 57.67(8.87)
Daub6_3 79.57(6.89) 78.25(10.30) 75.18(10.70) 65.25(8.77)
Daub6_4 82.21(6.43) 81.16(9.74) 76.42(10.54) 72.73(9.06)
Sym4_2 72.86(7.88) 75.09(10.51) 70.66(10.08) 57.90(8.92)
Sym4_3 77.67(6.02) 77.70(9.58) 73.88(9.86) 64.63(8.82)
Sym4_4 74.35(6.62) 74.26(8.51) 70.80(8.70) 66.81(8.42)
Sym5_2 71.66(7.27) 74.11(10.12) 69.38(9.94) 57.24(8.51)
Sym5_3 73.55(5.95) 74.80(9.09) 70.59(8.90) 62.88(8.16)
Sym5_4 61.98(6.99) 65.56(8.65) 62.55(7.57) 60.81(8.41)

slightly better than EWT2DC2, followed by EWT2DT, Gabor and
the classic curvelets. Finally, we observe that the EWT2DC1, fol-
lowed by EWT2DC2 and the classic curvelets, give the best results
for the UIUC dataset.

In Figures 9 and 10, we illustrate some segmentation results on
one image from each dataset for Gabor wavelets, classic curvelets
and the best empirical wavelets. We can see that both the EWT2DC1
and EWT2DC2 give appealing segmentations in the sense that
region boundaries are well localized. We can also observe that the
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Fig. 9: Visual comparisons of segmentation results for the best
wavelet families on one image from the Outex and Brodatz datasets.

original curvelets can have serious drawbacks in their result (see
especially for texture from the ALOT dataset).
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Fig. 10: Visual comparisons of segmentation results for the best
wavelet families on one image from the ALOT and UIUC datasets.

These experimental results show that for all datasets, the empir-
ical wavelet family gives the best and most consistent segmenta-
tion results confirming the initial intuition that adaptive wavelet
representations will better characterize textures.
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7 Conclusion

In this paper, we have assessed unsupervised wavelet-based texture
segmentation. In order to focus on textures present in the image,
we first decomposed the image into its cartoon and texture com-
ponents and then processed only the texture part. In particular, we
investigated the impact of considering an adaptive framework using
the recently introduced empirical wavelets. We used four standard
texture datasets to experiment the influence of the window’s size
used when computing the “wavelet energy”, the type of used wavelet
energy, and the difference between a standard and a more advanced
clustering technique. Finally, we ran the experiments based on a very
broad choice of wavelets. As expected, wavelet families taking into
account different directions are more efficient to characterize tex-
tures. Moreover, in almost all cases, the empirical wavelets (and
in particular, the empirical curvelets) outperform the other types of
wavelets. Their adaptability turns out to be a very important property
to characterize textures.
In terms of future research, we did not take into account the informa-
tion contained in the cartoon part of the original image in any of our
experiments. Thus, it will be interesting to use a specific algorithm
to segment the cartoon part on its own and finally find an “optimal”
strategy to fusion both segmentations. Automatically detecting the
expected number of classes in the segmentation is another open and
difficult problem. If some approaches can be designed for partic-
ular type of images where some a priori information is available,
the general case remains a challenge and further investigations must
be conducted. We also started some investigation on how to com-
bine the empirical transforms with deep learning techniques for the
purpose of supervised texture segmentation.
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