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PART ONE

Fourier analysis



On the menu ...

Introduction - some history ...
Notations.
Fourier series.
Continuous Fourier transform.
Discrete Fourier transform.
Properties.
2D extension.
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An everyday challenge

Signal/image processing : need to :

analyze : −→

synthesize :

−→

=⇒ need some reference elements.
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The Fourier revolution !
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Biography

Born in March 21th, 1768 at Auxerre (France), died
in Mai 16th, 1830

Graduated from ENS (Professors : Lagrange,
Monge, Laplace)

Chair at Polytechnique in 1797

Elected member of the French Academy of sciences
in 1817

Elected member of the French Academy in 1826



The Fourier revolution !
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Biography

Born in March 21th, 1768 at Auxerre (France), died
in Mai 16th, 1830

Graduated from ENS (Professors : Lagrange,
Monge, Laplace)

Chair at Polytechnique in 1797

Elected member of the French Academy of sciences
in 1817

Elected member of the French Academy in 1826

Scientific contributions

Analytic heat theory : modeling of heat propagation by
trigonometric series (Fourier series)

First to speak about the “greenhouse effect”



Notations
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L1 : space of integrable functions
Let f ∈ L1(Rn) then ‖f‖L1 =

∫
|f (t)|dt <∞

L2 : space of functions of finite energy (square integrable)

Let f ∈ L2(Rn) then ‖f‖L2 =
(∫
|f (t)|2dt

) 1
2 <∞

Inner product between functions
Let f ,g ∈ E then 〈f ,g〉 =

∫
f (t)ḡ(t)dt

If ∃T ∈ R such that ∀t ∈ R, f (t + T ) = f (t) then T is called the period
of f and F = 1/T is the frequency of f .

Dirac function : δ(t)
δ(t) = +∞ at t = 0, 0 otherwise and

∫
δ(t)dt = 1.

Discrete case : Kronecker symbol : δ[n]
δ[n] = 1 if n = 0, 0 otherwise.



Fourier series : Definition
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Idea : all periodic function of period T can be decomposed as the sum
of trigonometric polynomials e2π

n
T t :

f (t) =
+∞∑

n=−∞
cn(f )e2π

n
T t where cn(f ) =

1
T

∫ +T/2

−T/2
f (t)e−2π

n
T t



Fourier series : Definition

JGS Basics about Fourier analysis

Idea : all periodic function of period T can be decomposed as the sum
of trigonometric polynomials e2π

n
T t :

f (t) =
+∞∑
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n
T t where cn(f ) =

1
T
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n
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if f is real

f (t) = a0(f ) +
+∞∑

1

an(f ) cos
(

2π
n
T

t
)

+
+∞∑

1

bn(f ) sin
(

2π
n
T

t
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Fourier series : Definition
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Idea : all periodic function of period T can be decomposed as the sum
of trigonometric polynomials e2π

n
T t :

f (t) =
+∞∑

n=−∞
cn(f )e2π

n
T t where cn(f ) =

1
T

∫ +T/2

−T/2
f (t)e−2π

n
T t

if f is real

f (t) = a0(f ) +
+∞∑

1

an(f ) cos
(

2π
n
T

t
)

+
+∞∑

1

bn(f ) sin
(

2π
n
T

t
)

where a0(f ) = 1
T

∫ +T/2
−T/2 f (t)dt , b0(f ) = 0 and for n > 0

an(f ) =
2
T

∫ T/2

−T/2
f (t) cos

(
2π

n
T

t
)

dt , bn(f ) =
2
T

∫ T/2

−T/2
f (t) sin

(
2π

n
T

t
)

dt



Fourier series : Properties 1/3

if f is even then c−n(f ) = cn(f ), if f is real bn(f ) = 0,
if f is odd then c−n(f ) = −cn(f ), if f is real an(f ) = 0

Parseval equality :

+∞∑
n=−∞

|cn(f )|2 =
1
T

∫ T/2

−T/2
|f (t)|2dt =

1
T

∫ T

0
|f (t)|2dt = ‖f‖2L2 .
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Fourier series : Properties 2/3
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The sinus/cosinus frequencies are multiple of 1/T (harmonics).

Spectral representation

|cn|

1
T

2
T

3
T

4
T

5
T

−1
T

−2
T

−3
T

−4
T

−5
T n



Fourier series : Properties 3/3

denote en(t) = e2π
n
T t then

cn(f ) = 1
T

∫ +T/2
−T/2 f (t)ēn(t)dt = 〈f ,en〉

but {en} is an orthonormal basis (〈en,em〉 = 0 if n 6= m and
1 if n = m)
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Fourier series : Properties 3/3

denote en(t) = e2π
n
T t then

cn(f ) = 1
T

∫ +T/2
−T/2 f (t)ēn(t)dt = 〈f ,en〉

but {en} is an orthonormal basis (〈en,em〉 = 0 if n 6= m and
1 if n = m)

=⇒ Fourier series decomposition = projection a sinus/cosinus
basis.
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Fourier series : Example
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A

−A

T

Real and odd signal
with zero mean
=⇒ an(f ) = 0 ∀n



Fourier series : Example
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A

−A

T

Real and odd signal
with zero mean
=⇒ an(f ) = 0 ∀n

Only bn(f ) are different from 0 :

bn(f ) =
2
T

∫ T/2

−T/2
f (t) sin

(
2π

n
T

t
)

dt

=
2A
T

[
−
∫ 0

−T/2
sin
(

2π
n
T

t
)

dt +

∫ T/2

0
sin
(

2π
n
T

t
)

dt

]

=
2A
T

{[
T

2πn
cos

(
2π

n
T

t
)]0

−T/2
+

[
− T

2πn
cos

(
2π

n
T

t
)]T/2

0

}

=
A
nπ

(1− cos(nπ)− cos(nπ) + 1)

=
2A
nπ

(1− (−1)n)



Fourier series : Example
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Continuous Fourier transform : Definition

Goal : generalization of the spectrum representation to
non-periodic functions (frequencies ν ∈ R).
The Fourier transform of a function f is given by

f̂ (ν) =

∫ +∞

−∞
f (t)e−2πνtdt

The inverse transform is given by

f (t) =

∫ +∞

−∞
f̂ (ν)e+2πνtdν
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Continuous Fourier transform : Properties
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Function Fourier transform
Linearity af1(t) + bf2(t) af̂1(ν) + bf̂2(ν)

Dilation f (at) 1
|a| f̂
(
ν
a

)
Temporal Translation f (t + t0) f̂ (ν)e2πνt0

Temporal Modulation f (t)e2πν0t f̂ (ν − ν0)

Convolution f (t) ? g(t) f̂ (ν)ĝ(ν)

Derivative f ′(t) 2πν f̂ (ν)

Parseval-Plancherel theorem
The inner product is conserved :∫ +∞

−∞
f (t)ḡ(t)dt =

1
2π

∫ +∞

−∞
f̂ (ν)¯̂g(ν)dν

In particular : ∫ +∞

−∞
|f (t)|2dt =

1
2π

∫ +∞

−∞
|̂f (ν)|2dν



Continuous Fourier transform : “Some classics”
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Function Fourier transform
constant A Aδ(ν)

Dirac δ(t) 1
Trigonometric function cos(2πν0t) 1

2 [δ(ν − ν0) + δ(ν + ν0)]

Sign function Sign(t) 1
πν

Heavyside function u(t) 1
πν

+ 1
2δ(ν)

Square function 1 if −T/2 6 t 6 T/2, 0 otherwise Tsinc(πνT )

Dirac comb
∑+∞

m=−∞ δ(t −mT0) 1
T0

∑+∞
n=−∞ δ(ν − nν0)

Gaussian 1
σ
√

2π
e

−x2

2σ2 e−4π2σ2ν2



Discrete Fourier transform : Definition

Assume that f (t) is sample on N points at the frequency Fe,
f (nTe) (we can directly note f (n)).

Discrete Fourier Transform (DFT) :

F (k) =
N−1∑
n=0

f (n)e−2π
nk
N

Inverse transform :

f (n) =
1
N

N−1∑
k=0

F (k)e2π
nk
N

Fast Algorithm : FFT
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Link between FT and DFT 1/3
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Saying that f (t) is sampled is equivalent to f (n) = f (t)P(t)
where P(t) a Dirac comb associated to Te.

t

t

t

t

f (t)

P (t)

f (n)

But the FT of the Dirac comb is a Dirac comb and a temporal
product becomes a convolution product in the Fourier domain
=⇒ duplication the input signal spectrum.



Link between FT and DFT 2/3
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Fe 2Fe−Fe−2Fe ν

ν

|DFT (ν)|

|FT (ν)|

. . .. . .

Shannon condition to have a correct reconstruction of the
original signal : the support the FT of f must be limited to the
frequency range ]− Fe/2; Fe/2[ in order to avoid some
spectrum overlapping.



Link between FT and DFT 3/3
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Truncation effect : N samples⇔ to weight f (t) by a square function.

f ′(t) = f (t)Π(t) where Π(t) = 1 if t ∈ [0,NTe],0 otherwise

=⇒ convolution in the spectral domain by a sinc function ! We deform
the spectrum !
Example : f (t) = sin(2πνt) (ν = 30 Hz)
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Truncation effect : N samples⇔ to weight f (t) by a square function.
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=⇒ convolution in the spectral domain by a sinc function ! We deform
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Window weighting 1/2
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To reduce the spectrum deformation, we can use other kind of
windows w(t) with “better” spectral behavior. Then f ′(t) = w(t)f (t)
=⇒ triangular, parabolic, Hanning, Hamming, Blackman-Harris,
Gauss, Chebychev windows, . . .
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To reduce the spectrum deformation, we can use other kind of
windows w(t) with “better” spectral behavior. Then f ′(t) = w(t)f (t)
=⇒ triangular, parabolic, Hanning, Hamming, Blackman-Harris,
Gauss, Chebychev windows, . . .



Window weighting 2/2
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Resolution power 1/2
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When we use a square window, the principal sinc lobe in the Fourier domain
has a total width of 2/N and the secondary lobes of 1/N.
Problem when two pikes are too close : we can distinguish them or resolve
them :



Resolution power 2/2

To resolve two frequencies, it is necessary that the gap
between them is larger than the Fourier resolution :

|ν1 − ν2| >
1
N

Otherwise we can use the zero padding technique (virtual
augmentation of N by inserting zeros between the signal’s
samples, it is possible to prove that it does not alter the
spectrum shape).
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Time-frequency incertitude principle 1/3
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Localization behavior
Signals well localized in time =⇒ have large support in the frequency
domain.

Large signals in the time domain =⇒ well localized in the frequency
domain.

Ex : δ(t − t0) =⇒ e2πνt0 (infinite support in the frequency domain)

Statistical information distribution

The quantities |f (t)|
2

Ef
and |̂f (ν)|

2

Ef
with Ef the energy given by the Parseval

theorem, can be interpreted probability densities of the information repartition
in one domain or the other. We can compute the moments of these densities.



Time-frequency incertitude principle 2/3
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Time and frequency averages

t̄ =
1
Ef

∫ +∞

−∞
t |f (t)|2dt et ν̄ =

1
Ef

∫ +∞

−∞
ν |̂f (ν)|2dν

Time and frequency variances

(∆t)2 =
1
Ef

∫ +∞

−∞
(t− t̄)2|f (t)|2dt et (∆ν)2 =

1
Ef

∫ +∞

−∞
(ν− ν̄)2 |̂f (ν)|2dν

∆ν and ∆t are invariants by translation in t and ν.
The product ∆t∆ν is invariant time/frequency
contraction/dilatation.



Time-frequency incertitude principle 3/3
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Gabor-Heisenberg incertitude principle
We can prove that :

∆t∆ν >
1

4π

Signals which are jointly of compact supports in both domains
are gaussian signals.



2D extension : continuous case

All previously principles can be directly extended to the 2D
case, for a function f (x1, x2) :

the continuous FT is given by :

f̂ (ν1, ν2) =

∫ +∞

−∞
f (x1, x2)e−2π(ν1x1+ν2x2)dx1dx2

and its inverse :

f (x1, x2) =

∫ +∞

−∞
f̂ (ν1, ν2)e+2π(ν1x1+ν2x2)dν1dν2
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2D extension : discrete case

Images f (i , j) are assume of size NxM

DFT :

F (k , l) =
N−1∑
i=0

M−1∑
j=0

f (i , j)e−2π(
ki
N + lj

M )

inverse :

f (i , j) =
1

NM

N−1∑
k=0

M−1∑
l=0

F (k , l)e2π(
ki
N + lj

M )
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2D extension : bars patterns
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2D extension : Lena
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PART TWO

Time-frequency analysis



Next on the menu ...

Time-frequency analysis
Short Term Fourier Transform
Limitations
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Limitation of the Fourier transform
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The FT has no “localization” notion : we cannot tell at which
moment a frequency component appeared.

sinusoid (30 Hz) + Dirac
(t = 0.3s)



Linear Chirp
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Chirp from 10Hz to 100Hz over 2s



Local Fourier transform
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Idea : “get a spetcrum per instant t : time-frequency analysis”

t

t

f (t)

ν ν ν

t1 t2 t3

f̂(t1, ν) f̂(t2, ν) f̂(t3, ν)

But the FT is computed over R : f̂ (ν) =
∫ +∞
−∞ f (t)e−2πνtdt ⇒ nonlocal.



Short Term Fourier Transform
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We can get the “localization” by considering a “small” portion
ofthe signal “close” to the considered instant.

=⇒ signal windowing.



Short Term Fourier Transform
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We can get the “localization” by considering a “small” portion
ofthe signal “close” to the considered instant.

=⇒ signal windowing.

The window is centered at τ and we “slide” the window by
tuning τ .

t

t

f (t)

τ

w(t)



Time-frequency plane

We get a 2D representation (time + frequency axis) called “the
time-frequency plane” or spectrogram

t

t

f (t)

τ1 τ2

ν

τ

τ1

τ2 f̂ (τ2, ν)

f̂ (τ1, ν)
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Definition
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The Short Term Fourier Transform can be written

Sf (ν, τ) =

∫ +∞

−∞
w(t − τ)f (t)e−2πνtdt

and we have

f (t) =

∫ +∞

−∞

∫ +∞

−∞
Sf (ν, τ)w(t − τ)e2πνtdτdν

where w(t) can be one of the previous windows.



Important properties of the time-frequency plane
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Sampling grid in time and
frequency

Gabor-Heisenberg (optimal case
= gaussian window)
⇒ ∆t∆ν = cst .
∆t , ∆ν are fixed by w(t).
⇒ tiling of the time-frequency
plane

ν

τ
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Sampling grid in time and
frequency
Gabor-Heisenberg (optimal case
= gaussian window)
⇒ ∆t∆ν = cst .
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Important properties of the time-frequency plane

JGS Basics about Fourier analysis

Sampling grid in time and
frequency
Gabor-Heisenberg (optimal case
= gaussian window)
⇒ ∆t∆ν = cst .
∆t , ∆ν are fixed by w(t).
⇒ tiling of the time-frequency
plane ν

τ

∆t

∆ν



Sinus + Dirac case
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sinusoid (30 Hz) + Dirac
(t = 0.3s)



Linear Chirp case
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Chirp from 10Hz to 100Hz over 2s



Influence of the window size 1/2
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L=32

Good time localization

Bad frequency localization



Influence of the window size 1/2
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L=64

Fair time localization

Fair frequency localization



Influence of the window size 1/2
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L=128

Bad time localization

Good frequency localization



Influence of the window size 2/2

JGS Basics about Fourier analysis



Influence of the window size 2/2
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Influence of the window size 2/2
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Limitations of the STFT 1/3
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Depending on the frequency content we can need several
resolutions. For instance, let the following signal :

f (t) =


2 cos(2π150t) if t ∈ [0; 1s] ∪ [0.4s; 0.78s] ∪ [0.8s; 1s]

2 cos(2π150t) + 0.5 cos(2π30t) if t ∈ [0.39s; 0.4s]

2 cos(2π150t) + cos(2π400t) if t ∈ [0.78s; 0.8s]

0 1
0.40.39 0.78 0.8 t

150Hz

30Hz

400Hz



Limitations of the STFT 2/3
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Limitations of the STFT 3/3

When different frequency component are present in the signal,
it is better to have a STFT with a small window to analyze high
frequencies and a wide window to analyze low frequencies. But
this is impossible because the STFT provides a uniform
time-frequency plane tiling !

=⇒ Use of wavelets : multiresolution analysis.
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