Basics about Fourier analysis

Jérôme Gilles

UCLA

・ロン ・聞 と ・ ヨ と ・ ヨ と

₹ 990

PART ONE

Fourier analysis

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

- Introduction some history ...
- Notations.
- Fourier series.
- Continuous Fourier transform.
- Discrete Fourier transform.
- Properties.
- 2D extension.

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Signal/image processing : need to :

• synthesize :

э

 \implies need some reference elements.

The Fourier revolution !

Biography

- Born in March 21th, 1768 at Auxerre (France), died in Mai 16th, 1830
- Graduated from ENS (Professors : Lagrange, Monge, Laplace)
- Chair at Polytechnique in 1797
- Elected member of the French Academy of sciences in 1817
- Elected member of the French Academy in 1826

The Fourier revolution !

Biography

- Born in March 21th, 1768 at Auxerre (France), died in Mai 16th, 1830
- Graduated from ENS (Professors : Lagrange, Monge, Laplace)
- Chair at Polytechnique in 1797
- Elected member of the French Academy of sciences in 1817
- Elected member of the French Academy in 1826

Scientific contributions

- Analytic heat theory : modeling of heat propagation by trigonometric series (Fourier series)
- First to speak about the "greenhouse effect"

イロト イポト イヨト イヨト

Notations

 L^1 : space of integrable functions Let $f \in L^1(\mathbb{R}^n)$ then $||f||_{L^1} = \int |f(t)| dt < \infty$

 L^2 : space of functions of finite energy (square integrable) Let $f \in L^2(\mathbb{R}^n)$ then $||f||_{L^2} = (\int |f(t)|^2 dt)^{\frac{1}{2}} < \infty$

Inner product between functions Let $f, g \in E$ then $\langle f, g \rangle = \int f(t)\bar{g}(t)dt$

If $\exists T \in \mathbb{R}$ such that $\forall t \in \mathbb{R}$, f(t + T) = f(t) then T is called the period of f and F = 1/T is the frequency of f.

Dirac function : $\delta(t)$ $\delta(t) = +\infty$ at t = 0, 0 otherwise and $\int \delta(t)dt = 1$. Discrete case : Kronecker symbol : $\delta[n]$ $\delta[n] = 1$ if n = 0, 0 otherwise.

・ロット (雪) () () () ()

Fourier series : Definition

Idea : all periodic function of period *T* can be decomposed as the sum of trigonometric polynomials $e^{j2\pi \frac{n}{T}t}$:

$$f(t) = \sum_{n = -\infty}^{+\infty} c_n(t) e^{j2\pi \frac{n}{T}t} \quad \text{where} \quad c_n(t) = \frac{1}{T} \int_{-T/2}^{+T/2} f(t) e^{-j2\pi \frac{n}{T}t}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Fourier series : Definition

if

Idea : all periodic function of period *T* can be decomposed as the sum of trigonometric polynomials $e^{j2\pi \frac{n}{T}t}$:

$$f(t) = \sum_{n = -\infty}^{+\infty} c_n(t) e^{j2\pi \frac{n}{T}t} \quad \text{where} \quad c_n(t) = \frac{1}{T} \int_{-T/2}^{+T/2} f(t) e^{-j2\pi \frac{n}{T}t}$$

f is real

$$f(t) = a_0(f) + \sum_{1}^{+\infty} a_n(f) \cos\left(2\pi \frac{n}{T}t\right) + \sum_{1}^{+\infty} b_n(f) \sin\left(2\pi \frac{n}{T}t\right)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Fourier series : Definition

Idea : all periodic function of period *T* can be decomposed as the sum of trigonometric polynomials $e^{j2\pi \frac{n}{T}t}$:

$$f(t) = \sum_{n = -\infty}^{+\infty} c_n(t) e^{j2\pi \frac{n}{T}t} \quad \text{where} \quad c_n(t) = \frac{1}{T} \int_{-T/2}^{+T/2} f(t) e^{-j2\pi \frac{n}{T}t}$$

if *t* is real

$$f(t) = a_0(t) + \sum_{1}^{+\infty} a_n(t) \cos\left(2\pi \frac{n}{T}t\right) + \sum_{1}^{+\infty} b_n(t) \sin\left(2\pi \frac{n}{T}t\right)$$

where $a_0(f) = \frac{1}{T} \int_{-T/2}^{+T/2} f(t) dt$, $b_0(f) = 0$ and for n > 0

$$a_n(f) = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos\left(2\pi \frac{n}{T}t\right) dt , \quad b_n(f) = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin\left(2\pi \frac{n}{T}t\right) dt$$

(個) (日) (日) (日)

if f is even then c_{-n}(f) = c_n(f), if f is real b_n(f) = 0,
if f is odd then c_{-n}(f) = -c_n(f), if f is real a_n(f) = 0
Parseval equality :

$$\sum_{n=-\infty}^{+\infty} |c_n(f)|^2 = \frac{1}{T} \int_{-T/2}^{T/2} |f(t)|^2 dt = \frac{1}{T} \int_0^T |f(t)|^2 dt = \|f\|_{L^2}^2.$$

▲□ → ▲ 三 → ▲ 三 → りへ(~

Fourier series : Properties 2/3

The sinus/cosinus frequencies are multiple of 1/T (harmonics).

JGS

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

• denote
$$e_n(t) = e^{j2\pi \frac{n}{T}t}$$
 then

・ロン ・四 と ・ ヨ と ・ ヨ と …

æ

• denote
$$e_n(t) = e^{j2\pi \frac{n}{T}t}$$
 then
• $c_n(f) = \frac{1}{T} \int_{-T/2}^{+T/2} f(t) \bar{e}_n(t) dt = \langle f, e_n \rangle$

ヘロン 人間 とくほど くほとう

æ

- denote $e_n(t) = e^{j2\pi \frac{n}{T}t}$ then
- $c_n(f) = \frac{1}{T} \int_{-T/2}^{+T/2} f(t) \bar{e}_n(t) dt = \langle f, e_n \rangle$
- but $\{e_n\}$ is an orthonormal basis ($\langle e_n, e_m \rangle = 0$ if $n \neq m$ and 1 if n = m)

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

• denote
$$e_n(t) = e^{j2\pi \frac{n}{T}t}$$
 then

•
$$c_n(f) = \frac{1}{T} \int_{-T/2}^{+T/2} f(t) \bar{e}_n(t) dt = \langle f, e_n \rangle$$

• but $\{e_n\}$ is an orthonormal basis ($\langle e_n, e_m \rangle = 0$ if $n \neq m$ and 1 if n = m)

 \Longrightarrow Fourier series decomposition = projection a sinus/cosinus basis.

▲圖 > ▲ 臣 > ▲ 臣 > 二 臣

Fourier series : Example

Real and odd signal with zero mean $\implies a_n(f) = 0 \ \forall n$

글 에 에 글 어 !!

ъ

Fourier series : Example

Real and odd signal with zero mean $\implies a_n(f) = 0 \ \forall n$

$$b_{n}(f) = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin\left(2\pi \frac{n}{T}t\right) dt$$

= $\frac{2A}{T} \left[-\int_{-T/2}^{0} \sin\left(2\pi \frac{n}{T}t\right) dt + \int_{0}^{T/2} \sin\left(2\pi \frac{n}{T}t\right) dt \right]$
= $\frac{2A}{T} \left\{ \left[\frac{T}{2\pi n} \cos\left(2\pi \frac{n}{T}t\right) \right]_{-T/2}^{0} + \left[-\frac{T}{2\pi n} \cos\left(2\pi \frac{n}{T}t\right) \right]_{0}^{T/2} \right\}$
= $\frac{A}{n\pi} (1 - \cos(n\pi) - \cos(n\pi) + 1)$
= $\frac{2A}{n\pi} (1 - (-1)^{n})$

Fourier series : Example

Basics about Fourier analysis

JGS

Goal : generalization of the spectrum representation to non-periodic functions (frequencies $\nu \in \mathbb{R}$). The Fourier transform of a function *f* is given by

$$\hat{f}(
u) = \int_{-\infty}^{+\infty} f(t) \boldsymbol{e}^{-\jmath 2\pi
u t} dt$$

The inverse transform is given by

Continuous Fourier transform : Properties

	Function	Fourier transform
Linearity	$af_1(t) + bf_2(t)$	$a\hat{f}_1(u)+b\hat{f}_2(u)$
Dilation	f(at)	$\frac{1}{ a }\hat{f}\left(\frac{\nu}{a}\right)$
Temporal Translation	$f(t+t_0)$	$\hat{f}(u) e^{j2\pi u t_0}$
Temporal Modulation	$f(t)e^{j2\pi\nu_0 t}$	$\hat{f}(u - u_0)$
Convolution	$f(t)\star g(t)$	$\hat{f}(u)\hat{g}(u)$
Derivative	f'(t)	$\jmath 2\pi u \hat{f}(u)$

Parseval-Plancherel theorem

The inner product is conserved :

$$\int_{-\infty}^{+\infty} f(t)\bar{g}(t)dt = \frac{1}{2\pi}\int_{-\infty}^{+\infty} \hat{f}(\nu)\bar{\hat{g}}(\nu)d\nu$$

In particular :

$$\int_{-\infty}^{+\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |\hat{f}(\nu)|^2 d\nu$$

JGS

Continuous Fourier transform : "Some classics"

	Function	Fourier transform
constant	A	$A\delta(u)$
Dirac	$\delta(t)$	1
Trigonometric function	$\cos(2\pi\nu_0 t)$	$\frac{1}{2}[\delta(\nu-\nu_0)+\delta(\nu+\nu_0)]$
Sign function	Sign(t)	$\frac{1}{\eta\pi\nu}$
Heavyside function	<i>u</i> (<i>t</i>)	$\frac{1}{\eta\pi\nu} + \frac{1}{2}\delta(\nu)$
Square function	1 if $-T/2 \leq t \leq T/2$, 0 otherwise	$T \operatorname{sinc}(\pi \nu T)$
Dirac comb	$\sum_{m=-\infty}^{+\infty} \delta(t-mT_0)$	$rac{1}{T_0}\sum_{n=-\infty}^{+\infty}\delta(u-n u_0)$
Gaussian	$\frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-x^2}{2\sigma^2}}$	$e^{-4\pi^2\sigma^2\nu^2}$

JGS

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Discrete Fourier transform : Definition

Assume that f(t) is sample on N points at the frequency F_e , $f(nT_e)$ (we can directly note f(n)).

Discrete Fourier Transform (DFT) :

$$F(k) = \sum_{n=0}^{N-1} f(n) e^{-j2\pi \frac{nk}{N}}$$

Inverse transform :

$$f(n) = rac{1}{N} \sum_{k=0}^{N-1} F(k) e^{j2\pi rac{nk}{N}}$$

Fast Algorithm : FFT

通り くほり くほり

Link between FT and DFT 1/3

Saying that f(t) is sampled is equivalent to f(n) = f(t)P(t)where P(t) a Dirac comb associated to T_e .

But the FT of the Dirac comb is a Dirac comb and a temporal product becomes a convolution product in the Fourier domain \implies duplication the input signal spectrum.

Link between FT and DFT 2/3

Shannon condition to have a correct reconstruction of the original signal : the support the FT of *f* must be limited to the frequency range $] - F_e/2$; $F_e/2$ [in order to avoid some **spectrum overlapping**.

< 回 > < 回 > < 回 > … 回

Link between FT and DFT 3/3

Truncation effect : *N* samples \Leftrightarrow to weight *f*(*t*) by a square function.

 $f'(t) = f(t)\Pi(t)$ where $\Pi(t) = 1$ if $t \in [0, NT_e], 0$ otherwise

 \Longrightarrow convolution in the spectral domain by a sinc function ! We deform the spectrum !

Example : $f(t) = \sin(2\pi\nu t)$ ($\nu = 30$ Hz)

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Link between FT and DFT 3/3

Truncation effect : *N* samples \Leftrightarrow to weight *f*(*t*) by a square function.

 $f'(t) = f(t)\Pi(t)$ where $\Pi(t) = 1$ if $t \in [0, NT_e], 0$ otherwise

 \Longrightarrow convolution in the spectral domain by a sinc function ! We deform the spectrum !

Example : $f(t) = \sin(2\pi\nu t)$ ($\nu = 30$ Hz)

프 🖌 🛪 프 🛌

3

Window weighting 1/2

To reduce the spectrum deformation, we can use other kind of windows w(t) with "better" spectral behavior. Then f'(t) = w(t)f(t) \implies triangular, parabolic, Hanning, Hamming, Blackman-Harris, Gauss, Chebychev windows, ...

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Window weighting 1/2

To reduce the spectrum deformation, we can use other kind of windows w(t) with "better" spectral behavior. Then $f'(t) = w(t)f(t) \Rightarrow$ triangular, parabolic, Hanning, Hamming, Blackman-Harris, Gauss, Chebychev windows, ...

JGS

Window weighting 2/2

JGS

<ロ> (四) (四) (三) (三) (三)

Resolution power 1/2

When we use a square window, the principal sinc lobe in the Fourier domain has a total width of 2/N and the secondary lobes of 1/N.

Problem when two pikes are too close : we can distinguish them or **resolve** them :

To resolve two frequencies, it is necessary that the gap between them is larger than the Fourier resolution :

$$|\nu_1-\nu_2|>\frac{1}{N}$$

Otherwise we can use the zero padding technique (virtual augmentation of N by inserting zeros between the signal's samples, it is possible to prove that it does not alter the spectrum shape).

伺 とくきとくきとう

Time-frequency incertitude principle 1/3

Localization behavior

- Signals well localized in time bave large support in the frequency domain.
- Large signals in the time domain → well localized in the frequency domain.

Ex : $\delta(t - t_0) \Longrightarrow e^{j2\pi\nu t_0}$ (infinite support in the frequency domain)

Statistical information distribution

The quantities $\frac{|f(t)|^2}{E_t}$ and $\frac{|\hat{f}(v)|^2}{E_t}$ with E_t the energy given by the Parseval theorem, can be interpreted probability densities of the information repartition in one domain or the other. We can compute the moments of these densities.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Time-frequency incertitude principle 2/3

Time and frequency averages

$$\bar{t} = \frac{1}{E_f} \int_{-\infty}^{+\infty} t |f(t)|^2 dt \qquad \text{et} \qquad \bar{\nu} = \frac{1}{E_f} \int_{-\infty}^{+\infty} \nu |\hat{f}(\nu)|^2 d\nu$$

Time and frequency variances

$$(\Delta t)^{2} = \frac{1}{E_{f}} \int_{-\infty}^{+\infty} (t - \bar{t})^{2} |f(t)|^{2} dt \quad \text{et} \quad (\Delta \nu)^{2} = \frac{1}{E_{f}} \int_{-\infty}^{+\infty} (\nu - \bar{\nu})^{2} |\hat{f}(\nu)|^{2} d\nu$$

- $\Delta \nu$ and Δt are invariants by translation in *t* and ν .
- The product ΔtΔν is invariant time/frequency contraction/dilatation.

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Time-frequency incertitude principle 3/3

Signals which are jointly of compact supports in both domains are gaussian signals.

・ 同 ト ・ ヨ ト ・ ヨ ト …

All previously principles can be directly extended to the 2D case, for a function $f(x_1, x_2)$:

the continuous FT is given by :

$$\hat{f}(\nu_1,\nu_2) = \int_{-\infty}^{+\infty} f(x_1,x_2) e^{-\jmath 2\pi(\nu_1 x_1 + \nu_2 x_2)} dx_1 dx_2$$

and its inverse :

$$f(x_1, x_2) = \int_{-\infty}^{+\infty} \hat{f}(\nu_1, \nu_2) e^{+\jmath 2\pi(\nu_1 x_1 + \nu_2 x_2)} d\nu_1 d\nu_2$$

Images f(i, j) are assume of size NxM

DFT :

$$F(k, l) = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} f(i, j) e^{-j2\pi (\frac{ki}{N} + \frac{lj}{M})}$$

inverse :

$$f(i,j) = \frac{1}{NM} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} F(k,l) e^{j2\pi (\frac{ki}{N} + \frac{lj}{M})}$$

JGS

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

2D extension : bars patterns

문 🕨 👘 🖻

JGS

2D extension : Lena

<ロ> (四) (四) (三) (三) (三)

JGS

PART TWO

Time-frequency analysis

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

- Time-frequency analysis
- Short Term Fourier Transform
- Limitations

ヘロト 人間 ト ヘヨト ヘヨト

3

Limitation of the Fourier transform

The FT has no "localization" notion : we cannot tell at which moment a frequency component appeared.

sinusoid (30 Hz) + Dirac (t = 0.3s)

프 🕨 🗆 프

Linear Chirp

JGS

Chirp from 10Hz to 100Hz over 2s

э

э

Local Fourier transform

Idea : "get a spetcrum per instant t : time-frequency analysis"

But the FT is computed over \mathbb{R} : $\hat{f}(\nu) = \int_{-\infty}^{+\infty} f(t) e^{-j2\pi\nu t} dt \Rightarrow$ nonlocal.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

ъ

Short Term Fourier Transform

We can get the "localization" by considering a "small" portion of the signal "close" to the considered instant.

 \implies signal windowing.

通 と く ヨ と く ヨ と

æ

Short Term Fourier Transform

We can get the "localization" by considering a "small" portion of the signal "close" to the considered instant.

 \implies signal windowing.

The window is centered at τ and we "slide" the window by tuning τ .

Time-frequency plane

We get a 2D representation (time + frequency axis) called "the time-frequency plane" or spectrogram

★ Ξ → ★ Ξ →

ъ

Definition

The Short Term Fourier Transform can be written

$$S_f(\nu,\tau) = \int_{-\infty}^{+\infty} w(t-\tau)f(t)e^{-j2\pi\nu t}dt$$

and we have

$$f(t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} S_f(\nu,\tau) w(t-\tau) e^{j 2\pi \nu t} d\tau d\nu$$

where w(t) can be one of the previous windows.

・ 同 ト ・ ヨ ト ・ ヨ ト …

E DQC

• Sampling grid in time and frequency

A E > A E >

ъ

.≣⇒

JGS

v

- Sampling grid in time and frequency
- Gabor-Heisenberg (optimal case = gaussian window) $\Rightarrow \Delta t \Delta \nu = cst.$
- Δt , Δv are fixed by w(t).
- \Rightarrow tiling of the time-frequency plane

Sinus + Dirac case

sinusoid (30 Hz) + Dirac (t = 0.3s)

JGS

э

э

Linear Chirp case

Chirp from 10Hz to 100Hz over 2s

JGS

Influence of the window size 1/2

L=32

Good time localization Bad frequency localization

э

三) -

э

JGS

< < >> < </>

Influence of the window size 1/2

L=64

Fair time localization Fair frequency localization

э

Influence of the window size 1/2

L=128 Bad time localization Good frequency localization

> < 三 > < 三 >

< 🗇

ъ

Influence of the window size 2/2

э

Influence of the window size 2/2

Influence of the window size 2/2

Limitations of the STFT 1/3

Depending on the frequency content we can need several resolutions. For instance, let the following signal :

Limitations of the STFT 2/3

When different frequency component are present in the signal, it is better to have a STFT with a small window to analyze high frequencies and a wide window to analyze low frequencies. But this is impossible because the STFT provides a uniform time-frequency plane tiling !

 \implies Use of wavelets : multiresolution analysis.

通 とう ほうとう ほうとう