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The recently proposed empirical wavelet transform was based on a particular type of

filter. In this paper, we aim to propose a general framework for the construction of
empirical wavelet systems in the continuous case. We define a well-suited formalism and

then investigate some general properties of empirical wavelet systems. In particular, we

provide some sufficient conditions to the existence of a reconstruction formula. In the
second part of the paper, we propose the construction of empirical wavelet systems based

on some classic mother wavelets.
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1. Introduction

Originally, wavelets were developed to leverage some limitations of the short-term

Fourier transform [Daubechies (1992); Mallat (2009)]. The primary goal was to

develop families of functions corresponding to time-frequency atoms of different

sizes, depending on their location in the time-frequency plane [Daubechies (1990)].

This property permits to improve the accuracy of the extracted intrinsic char-

acteristics of a function or signal. In the last decades, wavelets have proven to

be very successful not only in mathematics (for instance to characterize certain

function spaces [Vedel (2009); Triebel (2000); Triebel (2006)]) but in almost all

domain of science [Jaffard et al (2001)] and especially in signal/image process-

ing [Starck and Bijaoui (1994); Livens et al (1997); Chambolle et al. (1998);

Chai and Shen (2007); Morizet and Gilles (2008); Ocak (2009); Tang (2009);

Shen (2010); Hramov et al (2015); Gilles and Osher (2016)]. Despite the improve-

ment provided by wavelets, the Gabor-Heinsenberg uncertainty principle [Donoho

and Stark (1989)] still limits the accuracy of the obtained time-frequency rep-

resentation. In order to leverage this limitation and to extract a more detailed

instantaneous frequency information, several alternative approaches were studied

in the literature, we refer the reader to the review articles [Boashash (1992);
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Boashash (1992)]. Among these new techniques, data-driven methods have recently

received a lot of attention. In particular, the Hilbert-Huang Transform [Huang et al

(1998)] (HHT) has been widely studied. The authors aimed to take advantage of

the property that the Hilbert transform easily permits to extract instantaneous

amplitude and frequency of an Amplitude-Modulated/Frequency-Modulated signal

(AM/FM). The HHT is then based on two steps: 1) the Empirical Mode Decompo-

sition (EMD) is used to extract the intrinsic harmonic modes (the AM/FM compo-

nents), 2) the Hilbert transform is applied to each mode to extract its corresponding

instantaneous amplitudes and frequencies. Despite its success in a wide variety of

applications, the HHT has a major drawback: the EMD step is a purely algorithmic

method and lacks of solid mathematical background making its behavior difficult

to predict and sensitive to noise. To overcome this drawback, a few alternatives

inspired by the HHT were proposed in the literature. Hou et al. [Gilles (2011)]

introduced a variational model based on L1 minimization to directly extract the

parameters of an AM/FM model. Dragomiretskiy et al. [Dragomiretskiy and Zosso

(2014)] proposed to replace the EMD step by a method, called Variational Mode

Decomposition (VMD), incorporating the notion of analytical function in a vari-

ational model to extract the harmonic modes of the signal. The synchrosqueezed

wavelet transform [Daubechies et al (2011)] performs a reallocation process on the

standard continuous wavelet transform followed by a ridge detection step to build an

accurate time-frequency representation. Another wavelet based alternative, called

the Empirical Wavelet Transform (EWT), has been proposed in [Gilles (2013);

Gilles et al (2014)] to construct an adaptive, i.e data-driven, wavelet transform.

The purpose of the EWT is to achieve an adaptive decomposition into harmonic

modes of an input signal to replace the EMD step. The EWT, thanks to the well

established wavelet theory, expects to provide solid theoretical foundations. The

main idea at the core of the EWT is based on the work in [Flandrin and Gonçalvès

(2004)] which experimentally shows that the EMD behaves like an adaptive filter

bank, i.e filters based on data-driven supports in the frequency domain. This prop-

erty can be easily explained since the Fourier transform of an AM/FM component

is of “almost” compact support (i.e most of its energy is concentrated within a

certain frequency range). The first step of the EWT consists in detecting the po-

sition of these supports, i.e segment the Fourier spectrum of the input signal, to

define a partition of the frequency domain. Next, a Littlewood-Paley type filter

is defined on each support creating a wavelet filter bank driven by the given input

signal. Finally, this filter bank is applied to the input signal to extract the harmonic

modes contained within. The Hilbert transform can then be individually applied to

these components to extract an accurate time-frequency information. If the EWT

has already proven its efficacy to analyze signals from different fields of science

and engineering [Huang et al (2018); Huang et al (2019); Hao and Jun-Hai (2013);

Hua et al (2015); Kumara and Saini (2014); Li et al (2014); Thirumala et al (2015);

Liu et al (2016); Bhattacharyya et al. (2017)], it currently proposes only one type of
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wavelet and its theoretical aspects remain to be investigated. In this paper, we aim

to establish a general framework/formalism to design different empirical wavelets

and prove some global properties in the continuous framework. In Section 2, we

recall some notations and basic definitions which will be used throughout the pa-

per. In Section 3, we define the formalism to manipulate arbitrary partitions of

the real line (i.e corresponding to the detected harmonic mode supports). Section 4

defines Empirical Wavelet Systems and investigates some of their basic properties

like the necessary and sufficient conditions to the existence of a reconstruction for-

mula. Different families of empirical wavelets and some of their specific properties

are investigated in Section 5. Finally, this work will be concluded in Section 7.

2. Generalities - Notations

In this paper, we will consider that all functions belong to L1(R)∩L2(R) equipped

with its usual inner-product, defined by

∀f, g ∈ L1(R) ∩ L2(R) ; 〈f, g〉 =

∫

R
f(t)g(t)dt.

The Fourier transform of f ∈ L1(R) ∩ L2(R) and its inverse are defined by

F(f)(ξ) = f̂(ξ) =

∫

R
f(t)e−2πıξtdt,

and

f(t) = F−1(f̂)(t) =
ˇ̂
f(t) =

∫

R
f̂(ξ)e2πıξtdξ,

respectively. Throughout the paper, the variable ξ ∈ R will denote the frequency.

We will also use the following standard operators:

• modulation Ea: ∀f ∈ L1(R) ∩ L2(R), Eaf(t) = e2πıatf(t),

• translation Ta: ∀f ∈ L1(R) ∩ L2(R), Taf(t) = f(t− a),

• scaling Da: ∀a > 0,∀f ∈ L1(R) ∩ L2(R), Daf(t) = 1√
a
f
(
t
a

)
,

it is easy to check that these operators have the following properties:

F(Eaf) = Taf̂ ; F−1
(
Eaf̂

)
= T−af (1)

F(Taf) = E−af̂ ; F−1
(
Taf̂

)
= Eaf (2)

F(Daf) = D1/af̂ ; F−1
(
Daf̂

)
= D1/af (3)

3. Partitioning of the Fourier line

In this section, we define the formalism which will be used to describe the Fourier

supports used in the construction of empirical wavelets. Let V = {νn}nMn=nm be a set

of boundary points, where nm, nM ∈ Z and nm < nM . For instance, the algorithm

based on the scale-space theory and described in [Gilles and Heal (2014)] can be
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ν0 = 0 ν1 ν2 ν3 ν4ν−1ν−2ν−3
ξ

Ω0 Ω1 Ω2 Ω3 Ω4Ω−1Ω−2Ω−3Ω−4

0 ν1 ν2 ν3 ν4ν−1ν−2ν−3
ξ

Ω1 Ω2 Ω3 Ω4Ω−1Ω−2Ω−3Ω−4

Fig. 1. Example of partitions V (top) and V∗ (bottom) of the Fourier line.

used to find such partition. We adopt the convention ν0 = 0 which implies that

if n < 0 then νn < 0 and if n > 0 then νn > 0. In most practical cases ν0 = 0

is excluded (this will correspond to have a low pass-filter in the filter bank), and

in such case we will denote the partition V∗ = {νn}nMn=nm,n6=0. A partition of the

Fourier line based on the set of boundaries V can be defined as the set of intervals,

or supports, of the form

∀n = nm, . . . , nM , Ωn = [νn, νn+1].

In the rest of the paper, we will denote Ω = {Ωn}nMn=nm a given partition of

the Fourier line. In the case of V∗, the same definition is used except that

n = nm, . . . , nM ;n 6= 0 and Ω−1 = [ν−1, ν1] (i.e the zero frequency belongs to

Ω−1). An example for both cases is given in Figure 1

We can distinguish four main types of partitions (note that some of these cases

are not exclusive):

(1) Infinite number of supports: nm = −∞ and nM = +∞ (i.e n ∈ Z),

(2) Finite number of supports: nm and nM are finite,

(3) Right ray: νnM = +∞, i.e the far right support is of the form ΩnM−1 =

[νnM−1,+∞),

(4) Left ray: νnm = −∞, i.e the far left support is of the form Ωnm = (−∞, νnm+1].

The length of a support will be denoted |Ωn| = νn+1 − νn with the straightforward

adaptation for V∗. We will only consider cases avoiding supports of length either

zero or infinite (except eventually potential right and/or left rays). Next, we need

to define the center of a support. If the considered support Ωn is compact then its

center is defined by

ωn =
νn+1 + νn

2
,

otherwise, in the case of rays Ωnm and ΩnM−1, we use the size of the adjacent

compact support:

ωnm = νnm+1 −
|Ωnm+1|

2
=

3νnm+1 − νnm+2

2
, (4)
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ξ

Ω0 Ω1 Ω2 Ω3 Ω4Ω−1Ω−2Ω−3Ω−4

ω4ω3ω2ω1ω0ω−1ω−2ω−3ω−4 0

Fig. 2. Example of a V partition with infinite rays with its associated support centers.

and

ωnM−1 = νnM−1 +
|ΩnM−2|

2
=

3νnM−1 − νnM−2

2
. (5)

An example is given is figure 2. Straightforwardly the same definition can be used

in the case of V∗ except for ω−1 where

ω−1 =
ν−1 + ν1

2
.

4. Empirical Wavelet Systems

An Empirical Wavelet System (EWS) is a set of filters whose supports in the Fourier

domain correspond to the supports provided by the partition of the Fourier line as

described in the previous section. An EWS is defined in the following way:

Definition 1 Let ψ ∈ L1(R) ∩ L2(R) be a function such that its Fourier trans-

form is localized around the zero frequency. An Empirical Wavelet System, denoted

{ψb,n}b∈R,n=nm,...,nM , generated by ψ is defined in the Fourier domain by, ∀ξ ∈ R,

ψ̂b,n(ξ) = E−bTωnDan ψ̂ (ξ) . (6)

or equivalently in the time domain by, ∀t ∈ R,

ψb,n(t) = TbEωnD1/anψ(t) (7)

where ωn is the center of the support Ωn as defined in the previous section and an
is a scaling factor whose choice depends on the used function ψ and must be studied

on a case by case basis.

Let us interpret this definition. Since we assume that ψ̂ is localized around the

zero frequency, equation (6) implies that ψ̂b,n is localized around the center ωn of

the support Ωn. The scaling factor, an, has to be chosen such that the support of

ψ̂b,n has a width of about |Ωn| to make sure ψ̂b,n is mostly localized on Ωn. The

modulation operator corresponds to translating ψb,n in the time domain. Therefore

the family of functions {ψb,n}b∈R,n=nm,...,nM corresponds to a set of bandpass filters

associated to the given partition Ω.

For notational convenience, in the remaining of the paper we will denote ψ̂n =

TωnDan ψ̂ (i.e ψ̂b,n = E−bψ̂n).

Given an Empirical Wavelet System, we can now give a general definition of the

Continuous Empirical Wavelet Transform.
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Definition 2 The Continuous Empirical Wavelet Transform (CEWT), generated

by {ψ̂b,n}b∈R,n=nm,...,nM , of a real or complex-valued function f ∈ L1(R)∩L2(R) is

given by,

Efψ(b, n) = 〈f̂ , E−bTωnDan ψ̂〉 = 〈f, TbEωnD1/anψ〉. (8)

Like the classic wavelet transform, the CEWT can be rewritten as a filtering process.

This is given by the following proposition (? will denote the convolution and we will

denote ψ∗(t) ≡ ψ(−t)),

Proposition 1 The Continuous Empirical Wavelet Transform Efψ(b, n) is equiva-

lent to the convolution of f with the function ψ∗n(t), i.e

Efψ(b, n) =
(
f ? ψ∗n

)
(b) = F−1

(
f̂ · ψ̂n

)
(b). (9)

Proof. From definition 2 of the CEWT, given functions f and ψ, we have,

Efψ(b, n) =
〈
f, TbEωnD1/anψ

〉
=

∫

R
f(t)TbEωnD1/anψ(t)dt

=

∫

R
f(t)Tbψn(t)dt

=

∫

R
f(t)ψn(t− b)dt

=

∫

R
f(t)ψ∗n(b− t)dt

=
(
f ? ψ∗n

)
(b).

This proves the first part of the statement. Now, noticing that,

ψ̂∗n =

∫

R
ψn(−t)e−2πıξtdt =

∫

R
ψn(−t)e2πıξtdt =

∫

R
ψn(t)e−2πıξtdt = ψ̂n(ξ),

we can rewrite the convolution obtained above as a pointwise multiplication in the

Fourier domain,

Efψ(b, n) = F−1
(
F
(
f(t) ? ψ∗n(t)

)
(b)
)

= F−1
(
f̂ · ψ̂∗n

)
(b) = F−1

(
f̂ · ψ̂n

)
(b).

This provides the second part of the statement and ends the proof.

The following proposition provides a sufficient condition to reconstruct f from Efψ
by defining a dual set of empirical wavelets.

Proposition 2 Assume that 0 <
∑nM
n=nm

∣∣∣ψ̂n(ξ)
∣∣∣
2

<∞ a.e, let us define the set of

dual empirical wavelets {φn}nMn=nm by

∀ξ ∈ R , φ̂n(ξ) =
ψ̂n(ξ)

∑nM
n=nm

∣∣∣ψ̂n(ξ)
∣∣∣
2
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then

f(t) =

nM∑

n=nm

(
Efψ(·, n) ? φn

)
(t). (10)

Proof. Using the Fourier transform and its inverse, we can write

nM∑

n=nm

(
Efψ(·, n) ? φn

)
(t) = F−1

(
F
(

nM∑

n=nm

(
Efψ(·, n) ? φn

)
(t)

))

= F−1

(
nM∑

n=nm

F
(
Efψ(·, n) ? φn

)
(ξ)

)

= F−1

(
nM∑

n=nm

Êfψ(ξ, n)φ̂n(ξ)

)

= F−1

(
nM∑

n=nm

f̂(ξ)ψ̂n(ξ)φ̂n(ξ)

)

= F−1


f̂(ξ)

nM∑

n=nm

ψ̂n(ξ)
ψ̂n(ξ)

∑nM
n=nm

∣∣∣ψ̂n(ξ)
∣∣∣
2




= F−1


f̂(ξ)

∑nM
n=nm

∣∣∣ψ̂n(ξ)
∣∣∣
2

∑nM
n=nm

∣∣∣ψ̂n(ξ)
∣∣∣
2




= F−1
(
f̂(ξ)

)
= f(t).

This ends the proof.

A particular case of the previous proposition is given by the following corollary.

Corollary 1 If
∑nM
n=nm

∣∣∣ψ̂n(ξ)
∣∣∣
2

= A <∞ a.e then

f(t) =
1

A

nM∑

n=nm

(
Efψ(·, n) ? ψn

)
(t). (11)

Proof. We apply Proposition 2 with

∀ξ ∈ R , φ̂n(ξ) =
ψ̂n(ξ)

∑nM
n=nm

∣∣∣ψ̂n(ξ)
∣∣∣
2 =

ψ̂n(ξ)

A

to get the expected result.

5. Construction of empirical wavelet systems

In this section we study some families of empirical wavelets based on classic mother

wavelets.
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νn νn+1 νnM−1

(1
−
γ
)ν
n

(1
+
γ
)ν
n

(1
−
γ
)ν
n
+
1

(1
+
γ
)ν
n
+
1

(1
−
γ
)ν
n
M

−
1

(1
+
γ
)ν
n
M

−
1

ψ̂n ψ̂nM−1

2τn 2τn+1 2τnM−1

ξ

Fig. 3. Construction of empirical Littlewood-Paley wavelets

5.1. Empirical Littlewood-Paley wavelets

Here, we revisit Littlewood-Paley (LP) wavelets proposed in the original EWT

paper [Gilles (2013)] but using the formalism defined in the previous sections. The

definition we provide next is more general (as opposed to the original definition

[Gilles (2013)]) in the sense that it covers the case of complex signals, i.e non

symmetric set of boundaries. The main idea in the construction of a LP-EWS is to

define transition intervals centered at each boundary, this is illustrated in Figure 3.

The width of the transition area centered at νn will be denoted 2τn and in practice

we will choose τn = γνn (the special case n = 0 will be discussed hereafter) where

γ is a constant to be determined. Following the same argument as in the original

work [Gilles (2013)], it can be shown that Corollary 1 can be fulfilled with A = 1

by choosing γ such that two consecutive transition intervals do not overlap. First,

let consider the case of a partition V, i.e when ν0 = 0 is in the set of boundaries.

On compact intervals Ωn, the empirical Littlewood-Paley wavelet is defined by

ψ̂LPn (ξ) =





1 if (1 + sgn(νn)γ)νn ≤ ξ ≤ (1− sgn(νn+1)γ)νn+1,

cos
[
π
2β
(

1
2γ|νn+1| (ξ − (1− sgn(νn+1)γ)νn+1)

)]

if (1− sgn(νn+1)γ)νn+1 ≤ ξ ≤ (1 + sgn(νn+1)γ)νn+1,

sin
[
π
2β
(

1
2γ|νn| (ξ − (1− sgn(νn)γ)νn)

)]

if (1− sgn(νn)γ)νn ≤ ξ ≤ (1 + sgn(νn)γ)νn,

0 otherwise,

where β(x) = x4(35 − 84x + 70x2 − 20x3) (this is a classic choice used in the

construction of Meyer wavelets [Daubechies (1992)]). Littlewood-Paley wavelets on
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left and right rays are respectively defined by

ψ̂LPlnm (ξ) =





1 if ξ ≤ (1− sgn(νnm+1)γ)νnm+1,

cos
[
π
2β
(

1
2γ|νnm+1| (ξ − (1− sgn(νnm+1)γ)νnm+1)

)]

if (1− sgn(νnm+1)γ)νnm+1 ≤ ξ ≤ (1 + sgn(νnm+1)γ)νnm+1,

0 otherwise,

and

ψ̂LPrnM−1(ξ) =





1 if ξ ≥ (1 + sgn(νnM−1)γ)νnM−1,

sin
[
π
2β
(

1
2γ|νnM−1| (ξ − (1− sgn(νnM−1)γ)νnM−1)

)]

if (1− sgn(νnM−1)γ)νnM−1 ≤ ξ ≤ (1 + sgn(νnM−1)γ)νnM−1,

0 otherwise,

where γ must be chosen such that

γ < min
n=nm,...,nM ,|Ωn|<∞

( |Ωn|
2|ωn|

)
, (12)

to avoid overlap of transition intervals. It remains to choose τ0 (since γν0 = 0), we

propose to choose τ0 = min(τ−1, τ1) to fulfill the conditions.

Second, we consider the case of a partition V∗, i.e ν0 = 0 is not used in the definition

of the partition. The same definitions as for the V case can be reused with of course

the straightforward adaptation for ψ̂LP−1 which must use the boundaries ν−1 and ν1.

However, a special case can occur when ω−1 = 0 (i.e ν−1 = −ν1) which will be an

issue in equation (12). In order to avoid this problem, we propose to choose γ such

that

γ < min

(
min

n=nm,...,nM ,n6=−1,|Ωn|<∞

( |Ωn|
2|ωn|

)
,

1

2

)
, (13)

(1/2 corresponds to consider half the width of Ω−1). Following the same proof as

in Proposition 1 in the article [Gilles (2013)], it is easy to check that a family of

empirical Littlewood-Paley wavelets fulfills Corollary 1 with bound A = 1.

An example of an empirical Littlewood-Paley wavelets filter bank is given in Figure 4

for the set of boundaries V∗ = {−∞,−3π,−π,−π/3, π/2, 3π/2, 2π}.

5.2. Empirical Meyer wavelets

Meyer wavelets were an important example since this construction shows that or-

thogonal wavelets exist (while Meyer was trying to prove the opposite!). It is impor-

tant to notice that the orthogonality is obtained thanks to a “magic” cancellation

trick of phases of consecutive wavelets. Unfortunately, this trick does no longer

work with the construction of empirical Meyer wavelets given hereafter making

them non-orthogonal. In the empirical case, we cannot directly write the empirical

Meyer wavelet in the general form ψ̂n = TωnDan ψ̂ since ψ is defined piecewise and
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-5π -4π -3π -2π -π -
π

3

π

2
π

3π

2
2π 3π 4π

1

Fig. 4. Example of an empirical Littlewood-Paley wavelet filter bank in the Fourier domain corre-
sponding to a V∗ partition with left and right rays.

we need to control the scaling factor independently for each sub-interval. Therefore,

we provide a direct formulation for ψ̂n:

ψ̂Mn (ξ) =

√
2

ωn+1 − ωn−1
e
ı 4π
3 max(|ωn−1|,|ωn+1|)





sin
(
π
2β
(
ξ−ωn−1

ωn−ωn−1

))

if ωn−1 ≤ ξ ≤ ωn
cos
(
π
2β
(

ξ−ωn
ωn+1−ωn

))

if ωn ≤ ξ ≤ ωn+1

.

The rays cases are given by

ψ̂Ml
nm(ξ) =

√
2

ωnm+1 − ωnm
e
ı 4π
3|ωnm+1|





1 if ξ ≤ ωnm
cos
(
π
2β
(

ξ−ωnm
ωnm+1−ωnm

))

if ωnm ≤ ξ ≤ ωnm+1

0 if ωnm+1 ≤ ξ

.

and

ψ̂Mr
nM−1(ξ) =

√
2

ωnM−1 − ωnM−2
e
ı 4π
3|ωnM−2|





0 if ξ ≤ ωnM−2

sin
(
π
2β
(

ξ−ωnM−2

ωnM−1−ωnM−2

))

if ωnM−2 ≤ ξ ≤ ωnM−1

1 if ωnM−1 ≤ ξ

.
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An example of an empirical Meyer wavelet filter bank is given in Figure 5. Empirical

Meyer wavelets have the property that each wavelet is normalized.

Proposition 3 Each empirical Meyer wavelet (except the rays ones) is normalized,

i.e ∀n = nm + 1, . . . , nM − 1, ‖ψMn ‖L2 = 1.

Proof. We have

‖ψMn ‖L2 = ‖ψ̂Mn ‖L2 =
2

ωn+1 − ωn−1

(∫ ωn

ωn−1

sin2

[
π

2
β

(
ξ − ωn−1

ωn − ωn−1

)]
dξ

+

∫ ωn+1

ωn

cos2

[
π

2
β

(
ξ − ωn

ωn−1 − ωn

)]
dξ

)

=
2

ωn+1 − ωn−1

(∫ 1

0

sin2
[π

2
β(u)

]
(ωn − ωn−1)du

+

∫ 1

0

cos2
[π

2
β(u)

]
(ωn+1 − ωn)du

)

=
2

ωn+1 − ωn−1

(∫ 1

0

(ωn − ωn−1) sin2
[π

2
β(u)

]
du

+

∫ 1

0

(ωn − ωn−1) cos2
[π

2
β(u)

]
du

+

∫ 1

0

(ωn+1 − 2ωn + ωn−1) cos2
[π

2
β(u)

]
du

)

=
2

ωn+1 − ωn−1

(
ωn − ωn−1

+(ωn+1 − 2ωn + ωn−1)

∫ 1

0

cos2
[π

2
β(u)

]
du

)
,

as shown [Daubechies (1992)],
∫ 1

0
cos2

[
π
2β(u)

]
du = 1

2 hence

‖ψMn ‖L2 =
2

ωn+1 − ωn−1

2ωn − 2ωn−1 + ωn+1 − 2ωn + ωn−1

2
= 1.

Proposition 4 The empirical Meyer wavelet system fulfill the following condition:

A ≤
nM−1∑

n=nm

|ψ̂(ξ)|2 ≤ B

where

A = min

(
2

ωnM−1 − ωnM−2
;

2

ωnm+1 − ωnm
; min
n=nm+1,...,nM−2

(
2

ωn+1 − ωn−1

))
,

and

B = max

(
2

ωnM−1 − ωnM−2
;

2

ωnm+1 − ωnm
; max
n=nm+1,...,nM−2

(
2

ωn+1 − ωn−1

))
.
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Fig. 5. Example of an empirical Meyer wavelet filter bank in the Fourier domain corresponding to

a V∗ partition with left and right rays.

Proof. By construction, we know that in the Fourier domain, only two consecutive

filters have overlapping supports. It is straightforward from the definition of the

rays to see that

nM−1∑

n=nm

|ψ̂(ξ)|2 =





2
ωnm+1−ωnm if ξ ≤ ωnm

2
ωnM−1−ωnM−2

if ξ ≥ ωnM−1

.

Next, ∀n = nm + 1, . . . , nM − 2,∀ξ ∈ [ωn, ωn+1], we have

nM−1∑

n=nm

|ψ̂(ξ)|2 = |ψ̂n(ξ)|2 + |ψ̂n+1(ξ)|2

=
2

ωn+1 − ωn−1
cos2

[
π

2
β

(
ξ − ωn

ωn+1 − ωn

)]

+
2

ωn+2 − ωn
sin2

[
π

2
β

(
ξ − ωn

ωn+1 − ωn

)]
.
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To simplify the notations, we will denote u = π
2β
(

ξ−ωn
ωn+1−ωn

)
. Thus, we have

nM−1∑

n=nm

|ψ̂(ξ)|2 =
2

ωn+1 − ωn−1
cos2(u) +

2

ωn+2 − ωn
sin2(u)

=
2

ωn+1 − ωn−1
+

(
2

ωn+2 − ωn
− 2

ωn+1 − ωn−1

)

︸ ︷︷ ︸
Θ

sin2(u).

Given that 0 ≤ sin2(u) ≤ 1, we consider the different cases:

• Θ > 0, we get

2

ωn+1 − ωn−1
≤
nM−1∑

n=nm

|ψ̂(ξ)|2 ≤ 2

ωn+2 − ωn
,

• Θ = 0, we get

nM−1∑

n=nm

|ψ̂(ξ)|2 =
2

ωn+1 − ωn−1
,

• Θ < 0, we get

2

ωn+2 − ωn
≤
nM−1∑

n=nm

|ψ̂(ξ)|2 ≤ 2

ωn+1 − ωn−1
.

Therefore,

min

(
2

ωn+1 − ωn−1
;

2

ωn+2 − ωn

)
≤
nM−1∑

n=nm

|ψ̂(ξ)|2

≤ max

(
2

ωn+1 − ωn−1
;

2

ωn+2 − ωn

)

It remains to take the minimum and maximum over all possible intervals to get

A ≤
nM−1∑

n=nm

|ψ̂(ξ)|2 ≤ B,

where

A = min

(
2

ωnM−1 − ωnM−2
;

2

ωnm+1 − ωnm
; min
n=nm+1,...,nM−2

(
2

ωn+1 − ωn−1

))
,

and

B = max

(
2

ωnM−1 − ωnM−2
;

2

ωnm+1 − ωnm
; max
n=nm+1,...,nM−2

(
2

ωn+1 − ωn−1

))
.

This conclude the proof.

We can notice that A > 0 and B <∞ which, thanks to Proposition 2, guarantee the

existence of a dual empirical wavelet system and hence a reconstruction formula.
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Fig. 6. Example of an empirical Shannon wavelet filter bank in the Fourier domain corresponding

to a V∗ partition with left and right rays.

5.3. Empirical Shannon wavelets

Shannon wavelets are commonly used in the Shannon sampling theory [Cattani

(2008)]. These wavelets are made of sinc functions which correspond to character-

istic functions over intervals in the Fourier domain. The construction of empirical

Shannon wavelets is then very easy since the mother wavelet is defined by

ψ̂SH(ξ) = e−ı
π
2 (ξ+ 3

2 )χ[−1/2,1/2](ξ) =

{
e−ıξ/2 if ξ ∈ [−1/2, 1/2)

0 otherwise
.

Therefore, in order to keep the width of the scaled wavelet to be |Ωn|, we have to

set an = |Ωn| and thus the set of empirical Shannon wavelets is defined by

ψ̂SHn (ξ) = TωnD|Ωn|ψ̂
SH(ξ) =

1√
|Ωn|

e−ı
π
2 ( ξ−ωn|Ωn|

+ 3
2 )χ[ωn− |Ωn|2 ;ωn+

|Ωn|
2 )(ξ).

Rays are simply defined by

ψ̂SHln (ξ) = e−ıπχ(−∞,νnm+1)(ξ),

and

ψ̂SHrn (ξ) = e−ı
π
2 χ[νnM−1,+∞)(ξ).

Examples of empirical Shannon filters for the same partition we used before is given

in Figure 6 Empirical Shannon wavelet can be characterized by
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Proposition 5 A set of empirical Shannon wavelets {ψSH} fulfills the condition

∀ξ ∈ R (taking the convention that |Ωn| = 1 for eventual left or right rays),

1

maxn=nm,...,nM |Ωn|
≤

nM∑

n=nm

∣∣∣ψ̂SHn (ξ)
∣∣∣
2

≤ 1

minn=nm,...,nM |Ωn|

Proof. By construction, the Shannon wavelets filters do not overlap in the Fourier

domain hence ∀n = nm, . . . , nM ,∀ξ ∈ Ωn,
∣∣∣ψ̂SHn (ξ)

∣∣∣
2

= 1
|Ωn| or

∣∣∣ψ̂SHn (ξ)
∣∣∣
2

= 1 for

left or right rays. Therefore the lower and upper bounds across all n are given by

the bounds provided in the proposition.

5.4. Empirical Gabor wavelets

The previous cases used mother wavelets having compact supports in the Fourier

domain making straightforward the construction of empirical families. In this sec-

tion, we address the case of Gabor wavelets [Christensen (2001); Christensen (2010);

Balazs et al. (2011); Ricaud et al (2013)] which do not have such property. We use

the mother wavelet ψG defined by ∀ξ ∈ R, ψ̂G(ξ) = e−π(2.5ξ)2

, this choice ensure

that ψ̂G is mostly localized in the interval [−1/2, 1/2] (in the sense that 99.999% of

‖ψG‖L2 comes from this interval) and that ψ̂G(0) = 1. In order to keep ψ̂Gn localized

in Ωn, we need to choose an = |Ωn|. Therefore we define

∀ξ ∈ R , ψ̂Gn (ξ) =
1√
|Ωn|

e−π( 2.5(ξ−ωn)
|Ωn| )

2

,

and ψ̂Gb,n(ξ) = e−2ıbξψ̂Gn (ξ). If rays are part of the partition, we propose two options

to define them. The first option consists in defining one Gaussian for each ray in

the following way:

ψ̂Glnm(ξ) =
1√
|Ωnm+1|

e
−π
(

2.5(ξ−ωnm )

|Ωnm+1|

)2

, (14)

and

ψ̂GrnM−1(ξ) =
1√

|ΩnM−2|
e
−π
(

2.5(ξ−ωnM−1)

|ΩnM−2|

)2

, (15)

where ωnm and ωnM−1 are given by (4) and (5), respectively. This option has the

drawback that the spectral information “far” on the left or right (i.e outside the

intervals where the left and right Gaussian are localized) are completely wiped out

from the analysis. This could potentially be an issue for some applications hence

we propose a second option to define the rays filters:

ψ̂G̃lnm(ξ) =




ψ̂Glnm(ξ) if ωnm ≤ ξ ≤ νnm+1

1√
|Ωnm+1|

otherwise,
(16)
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Fig. 7. Example of an empirical Gabor wavelets filter bank in the Fourier domain where option 1
was used for the rays.

and

ψ̂G̃rnM−1(ξ) =




ψ̂GrnM−1(ξ) if νnM−1 ≤ ξ ≤ ωnM−1

1√
|ΩnM−2|

otherwise.
(17)

This option does not discard the far spectral information. Examples of empirical

Gabor filters for each options for the same partition we used before are given in

Figures 7 and 8, respectively. We can prove the following property.

Proposition 6 All types of empirical Gabor wavelet sets fulfill the condition

∀ξ ∈ R , 0 <

nM∑

n=nm

∣∣∣ψ̂n(ξ)
∣∣∣
2

<∞.

Moreover, if the empirical Gabor wavelets set is build either based on an infinite set

of supports or a finite set of supports using the second option described above then

∀ξ ∈ R ,

nM∑

n=nm

∣∣∣ψ̂n(ξ)
∣∣∣
2

≥ e− 25π
8 .

Proof. Let an arbitrary set of empirical Gabor wavelets {ψn}. By construction, it

is obvious that
∑nM
n=nm

∣∣∣ψ̂n(ξ)
∣∣∣
2

> 0. To check the upper bound, let consider first
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Fig. 8. Example of an empirical Gabor wavelets filter bank in the Fourier domain where option 2

was used for the rays.

the case of an infinite set of supports, we write
nM∑

n=nm

∣∣∣ψ̂n(ξ)
∣∣∣
2

=

nM∑

n=nm

∣∣∣TωnDan ψ̂(ξ)
∣∣∣
2

=

nM∑

n=nm

∣∣∣TωnDane
−π(2.5ξ)2

∣∣∣
2

=

nM∑

n=nm

1

an
e−2π(2.5 ξ−ωnan

)
2

.

Let denote amin = minn=nm,...,nM an and amax = maxn=nm,...,nM an. Noticing that,

by construction, amin and amax are both finite and positive, we have
nM∑

n=nm

∣∣∣ψ̂n(ξ)
∣∣∣
2

≤ 1

amin

nM∑

n=nm

e−2π(2.5 ξ−ωnamax
)
2

≤ 1

amin

∫

R
e−2π(2.5 ξ−ω

amax
)
2

dω <∞,

therefore

∀ξ ∈ R , 0 <

nM∑

n=nm

∣∣∣ψ̂n(ξ)
∣∣∣
2

<∞.

Now assume that the used partition is either infinite or finite and in this case

rays are defined via the second option describes above. Then we have that ∀ξ ∈
R,∃n∗ ∈ {nm, . . . , nM} such that ξ ∈ Ωn∗ . On this interval, again by construction,

we necessarily have
nM∑

n=nm

∣∣∣ψ̂n(ξ)
∣∣∣
2

≥
∣∣∣ψ̂n∗(ξ)

∣∣∣
2

≥
∣∣∣ψ̂n∗(νn∗)

∣∣∣
2

=
∣∣∣ψ̂(1/2)

∣∣∣
2

= e−
25π
8 .
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Note that in the last part of this proof, a finite partition using option 1 to build

the wavelet does not guarantee such constant lower bound. Indeed, on left or right

rays, as ξ goes to infinity ψ̂n → 0. This proposition is useful because it guaranties

that, using Proposition 2, we can build a set of function {φn} to reconstruct the

original function from the empirical wavelet transform information.

6. Numerical implementation

In this section, we consider discrete signals made of N samples (we don’t con-

sider signals of infinite length here). Given that the Fourier transform is peri-

odic, we only consider the Fourier domain within one period. For notation con-

venience, we use the normalized interval of frequencies (−π, π], i.e V ⊂ (−π, π).

All results and constructions of the different families of wavelets can be eas-

ily reformulated in the discrete case by sampling the variable ξ. The corre-

sponding numerical implementation of the Littlewood-Paley, Meyer, Gabor and

Shannon empirical wavelets systems are made available through the Empiri-

cal Wavelet Toolbox available at https://www.mathworks.com/matlabcentral/

fileexchange/42141-empirical-wavelet-transforms.

7. Conclusion

In this paper, we defined a general framework to build continuous empirical wavelet

systems. We provided some conditions to guarantee well-behaved dual systems use-

ful to reconstruct a function from its transform. Finally, we showed the construction

of several empirical wavelet systems based on some classic mother wavelets, their

numerical implementation is freely available in the Empirical Wavelet Toolbox. In

terms of future investigations, we expect to derive conditions to build empirical

wavelet frames as well as provide some general closed form for the corresponding

frame bounds. Extensions to higher dimension are also of interest but will raise

some important questions related to the geometrical properties of the detected sup-

ports in the Fourier domain and how to derive conditions for the existence of a

reconstruction formula.
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