
Empirical curvelet based Fully Convolutional Network for supervised texture image
segmentation

Yuan Huanga,∗, Fugen Zhoua, Jérôme Gillesb
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Abstract

In this paper, we propose a new approach to perform supervised texture classification/segmentation. The proposed idea is to feed
a Fully Convolutional Network with specific texture descriptors. These texture features are extracted from images by using an
empirical curvelet transform. We propose a method to build a unique empirical curvelet filter bank adapted to a given dictionary
of textures. We then show that the output of these filters can be used to build efficient texture descriptors utilized to finally feed
deep learning networks. Our approach is finally evaluated on several datasets and compare the results to various state-of-the-art
algorithms and show that the proposed method dramatically outperform all existing ones.
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1. Introduction

Texture analysis is an important aspect of computer vision, it
is involved in a wide variety of applications ranging from medi-
cal imaging (tumor detection) [1], camouflaged target detection
[2, 3] or microscopy imaging (analysis of molecule alignments)
[4, 5], . . . However, texture segmentation and/or classification
is still an open and challenging problem in image processing
and computer vision due to the fact that textures can have a
huge variability making them difficult to characterize. Finding
a mathematical model to textures is very hard because of such
variability. The absence of a general texture model explains
why texture analysis is still a particularly challenging problem
nowadays.

Algorithms developed for texture classification/segmentation
purposes are based on two main steps: first the extraction of
texture features whose aim is to characterize textures; second
a classifying step which uses the information contained in the
features to distinguish between the different textures. Two main
philosophies can be used to perform the second step: unsuper-
vised and supervised. The unsupervised case does not use any
prior knowledge based on any learning technique, while the su-
pervised case uses a known dictionary of textures to learn how
to distinguish them from each other. The unsupervised case is
usually very challenging and in this paper we focus on the su-
pervised case. It is worth to mention that the segmentation can
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be performed at the pixel level or at a “superpixel” level (i.e. it
is a sursegmentation) [6, 7]. In this paper, we intend to perform
segmentation at the pixel level by introducing the use of data-
driven wavelets to create efficient texture descriptors which will
then be used to feed a neural network to perform the classi-
fication. Sections 1.1 hereafter and 1.2 review state-of-the-art
methods regarding texture descriptors and data classifiers, re-
spectively. We also refer the reader to the review article [8] for
a recent panorama of advances in the field of texture analysis.

1.1. Texture descriptors
Several approaches were proposed in the literature to design

texture features: Tamura local descriptors [9, 10], Haralick de-
scriptors [11] based on the Gray Level Co-occurrence Matrix
(GLCM) [12, 13, 14], Fractal Dimension [15], Structure Ten-
sor [16], Local Binary Pattern (LBP) [17, 18, 19, 20, 21, 22],
Laws’ Texture Energy [23], Hermite transform [24], Complex
Networks [25] or Markov Random Fields (MRF) [26]. It is
generally accepted within the community that scales and orien-
tations are important properties to characterize textures. There-
fore, techniques based on linear filtering [27, 28, 29, 30], such
as Gabor filters [31, 32, 33, 34] are widely used in the literature
because of their excellent selectivity in both scales and orienta-
tions. The wavelet transform and its variants [35, 36, 37, 38]
were also used since they provide more flexibility regarding
the chosen basis functions while keeping excellent selectivity
in scales and orientations.

In the last decades, adaptive, i.e. data driven, decomposition
techniques like Empirical Mode Decomposition (EMD) [39]
had received a lot of attention and reached great successes in
signal and image processing to extract low-level features [40].
However, the EMD method is a purely algorithmic method and
lacks mathematical foundations, moreover the interpretation of
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its generalization in 2D is more challenging. More recently, in
[41], the author proposed to build an adaptive wavelet trans-
form, called Empirical Wavelet Transform (EWT) to leverage
such problems. This transform has been extended to 2D for im-
age processing purposes in [42]. In [43], the authors investigate
the use of the EWT to perform unsupervised texture segmen-
tation and showed that data-driven wavelet achieve significant
better segmentation results than any other wavelet based de-
scriptors.

1.2. Data classification
The obtained texture descriptors are then employed to feed

a classifier which will assign one texture class to each pixel.
As mentioned above two approaches can be investigated: unsu-
pervised or supervised classification/segmentation. In the un-
supervised case, the algorithm only uses the current available
information to decide to which texture a pixel belongs to. For
instance, in [44], the authors combine color and texture descrip-
tors to feed a Mean-shift clustering algorithm [45]; in [46, 47]
the authors use wavelets to characterize the regularity of tex-
tures to drive a segmentation algorithm based on total varia-
tion. The output of DOOG (Difference Of Offset Gaussians)
filters were used to feed a neutrosophic clustering algorithm in
[48]. In [49], the authors propose a new approach consisting
in finding the best features to represent a certain set of tex-
tures in the absence of annotations and then use a Mumford-
Shah model to perform the final segmentation. Among the su-
pervised approaches, the learning step can be performed using
two main strategies: directly using an annotated dataset or us-
ing some complimentary prior information. For instance, in
[50, 51, 52], the authors propose similar algorithms based on
minimizing high-order energies guided by saliency maps and
external user interactions. Such algorithms perform poorly with
textures since saliency maps are not efficient texture descrip-
tors. The authors of [53] train a neural network to recognize
textural patches to perform the segmentation task. In [54], in-
teractively driven Markov random walks are used to perform
the segmentation. Deep learning/neural network techniques
had become very popular this last decade to tackle many seg-
mentation/classification problems like salient object detection
[55, 56], semantic segmentation [57, 58], hyperparameter opti-
mization [59],. . .

For the specific task of texture segmentation/classification,
several deep learning architectures were proposed in the liter-
ature. The authors of [60] combine several texture features to
train a Kohonen Network. In [61], the authors develop an algo-
rithm using learnable convolutional features to perform texture
segmentation while a Convolutional Neural Network (CNN)
was used in [62, 63, 64, 65, 66] to build descriptors to clas-
sify textures. In [67], a Long Short-Term Memory (LSTM)
based Recurrent Neural Network (RNN) was also proposed to
extract texture features and perform supervised texture segmen-
tation. A modified version of a Siamese network [68, 69] was
used in [70] to segment textures. Fully Convolutional Network
(FCN) [71] are powerful architectures for pixel semantic seg-
mentation and inspired a specific algorithm, called FCNT [72],
to segment textured images. This approach corresponds to an

optimized architecture which discards very deep shape infor-
mation and makes use of the very shallow features. However,
this approach performs poorly on grayscale datasets and needs
a refinement procedure to improve its performance. It signifies
that this architecture mostly relies on the color information and
does not really extract textural information. In [73], the authors
incorporate multi-scale saliency information in a CNN archi-
tecture to predict human eye fixation. If the initial purpose of
this approach was quite different, this network can also be eas-
ily modified to segment textures. The V-Net architecture used
in [74] for medical image segmentation cannot be directly used
for texture segmentation, but its underlying U-Net [75] archi-
tecture can be utilized for such purpose.

If most of these networks work perfectly on extracting deep
semantic features, they usually perform weakly in extracting
low-level textures characteristics, especially in the presence of
different illumination or similar geometric structures. There-
fore, our idea is to combine an FCN architecture with empirical
wavelet features. The EWT will extract the relevant low-level
texture information which will be used to feed an FCNT. Since
the empirical wavelet filter bank depends on the considered tex-
ture, we propose an approach to build a unique set of empirical
filters for a given dictionary of textures. To resume, the train-
ing set of textures is first used to build an “optimized” set of
empirical wavelet filters, then this filter bank is applied to build
the texture descriptors utilized to feed the FCNT in both the
training and testing stages.

The remainder of the paper is as follows. In section 2, we
briefly recall the construction of the EWT and present our ap-
proach to obtain a unique set of empirical filters for a given
training dataset. In section 3, we recall the FCNT architecture
and show how the EWT features are used to feed this architec-
ture. Experimental results based on several well-known texture
datasets are presented in section 4. Conclusions and perspec-
tives are given in section 5.

2. Texture Features Extraction by EWT

Standard wavelet methods are based on bandpass filters those
supports in the Fourier domain follow a prescribed scheme
driven by the used scaling law. This corresponds to use a
prescribed partitioning of the Fourier domain. For instance,
the classic dyadic wavelet transform aims at iterating a split
in half of the lower frequency subband at each scale increase.
The main disadvantage is that such prescribed scheme does not
guarantee that the harmonic modes within the signal will be
supported by this partitioning. This can be a real issue for tex-
ture analysis since it is well-known that the harmonic informa-
tion is important to characterize textures. In order to circumvent
this problem, in [41], the author proposes an adaptive wavelet
transform which automatically finds the Fourier supports which
best separate the harmonic modes present in the analyzed sig-
nal. In [42] the empirical wavelet transform was extended to 2D
in different ways (tensor approach, Littlewood-Paley wavelets,
curvelets) for image processing purposes. Following the results
obtained in [43], we propose to use the empirical curvelet trans-
form to extract texture features. For the reader’s convenience,

2



πω1 ω2 ω3 ωn ωn+1
oo

2τ1 2τ2 2τ3 2τn 2τn+1 τN

1

oo

Fig. 1. Magnitude of the Fourier spectrum segmentation and empirical wavelet
construction principle.

we briefly review the principles of the 1D empirical wavelet
transform (EWT) and then focus on the 2D curvelet version.

2.1. 1D Case

As mentioned previously, the EWT is a data-driven approach
whose purpose is to separate harmonic modes by detecting their
corresponding supports in the Fourier domain and to build a
Littlewood-Paley bandpass filter associated with each support.
Finally, the input signal is filtered by this EWT filter bank to
perform the modes separation. In 1D, it is then possible to use
the Hilbert transform to extract a very accurate time-frequency
representation (see [41] for more details).

Let us denoteω be the normalized frequency (i.e. ω ∈ [0, π]).
Let us assume that N supports are detected, we define the set of
ordered boundaries (see Fig. 1) by (ωn)n∈[0,...,N] ∈ [0, π] with the
convention that ω0 = 0 and ωN = π. The shaded areas in Fig-
ure 1, defined by the coefficients τn, are needed in the definition
of the wavelet filters. It is shown in [41], that for a properly
chosen τn, the corresponding set of empirical wavelets forms a
tight frame. Several approaches were proposed in [41] and [42]
to detect these boundaries, assuming that N is known. Later,
a parameter free approach based on the scale-space theory was
proposed in [76] also permitting to automatically find N. In
this paper, we will use this fully automatic method, we refer the
reader to [41] and [76] for more details.

2.2. 2D Case

In [42], the authors extended the EWT to several types of
two-dimensional transforms for image processing purposes. In
[43], the authors showed that the empirical curvelet transform
provides the best texture descriptors for unsupervised classifi-
cation. Therefore, we also adopt the empirical curvelet trans-
form (EWT2DC) to extract texture characteristics in this paper.
Hereafter, we briefly review how the construction of empirical
curvelet filters is performed, and we refer the reader to [42] for
more details and examples.

Since scales and orientations are important characteristics in
texture analysis, this justifies the effectiveness of the empirical
curvelets. Indeed, this transform aims at extracting harmonic
modes supports as polar wedges in the Fourier domain. The
major difference with the classic curvelet transform, which also
uses a prescribed scheme to partition the 2D Fourier plane,
is that the EWT2DC aims at detecting the position of these
wedges. This corresponds to find a set of radii and angles in the
frequency domain. Three options are possible to create such
partition: 1) finding a set of angles and scales independently

of each other (EWT2DC1), 2) finding a set of angles for each
scale ring (EWT2DC2) and 3) finding a set of scale radii for
each angular sector (EWT2DC3). The reader is invited to read
the papers [41, 42] and [43] for complete details on how these
partitions are built. Since in [43], the best results were obtained
using EWT2DC1, we will only use this option in this paper.

2.3. Construction of a unique set of EWT2DC filters for a given
dictionary of textures

As described in the previous section, the EWT2DC aims at
constructing one specific filter bank for one image. Since in this
paper we are investigating supervised classification, it means
that we have a dictionary of textures available to train our al-
gorithm. Therefore, this implies that each texture image from
this dictionary will have its own set of curvelet filters. However,
since we want to characterize all textures in that dictionary, we
need to find a unique set of empirical curvelet filters which will
be used for all textures. Hereafter we propose a general method
to merge several sets of boundaries detected on distinct spec-
tra (or histograms) in order to form the expected unique set of
boundaries.

2.3.1. Merging boundary sets
Let us assume we have NT 1D spectra, denoted Fi(ω), i =

1, . . . ,NT . Applying the scale-space boundary detection
method described in [76] to each spectrum, we get NT sets of
boundaries that we will denote Ωi = {ωi

n}n=0,...,N i where we keep
the convention that ωi

0 = 0 and ωi
N i = π. We first merge these

sets by taking their union to get the set

Ω =

NT⋃
i=0

Ωi = {ωn}n=0,...,N , (1)

where N is the number of boundaries minus one present in Ω

(we also assume Ω is a well-ordered set, i.e. ∀n = 0, . . . ,N −
1, ωn+1 > ωn). Such merging does not guarantee that each cor-
responding support [ωn, ωn+1] corresponds to a harmonic mode
in any of the original spectra and thus should be removed. We
propose a two stages method to remove these useless supports.
The first stage is based on the principle that if a support corre-
sponds to a harmonic mode, it must contain one of the highest
local maxima present in the supports of the original spectra Fi.
Let us denote Λi = {λi

n}n=0,N i−1 the set containing the positions
of the largest local maximum on each support generated by Ωi,
i.e. ∀i = 1, . . . ,NT − 1,∀n = 0, . . . ,N i,

λi
n = arg max

ω∈[ωi
n,ω

i
n+1]
|Fi(ω)|. (2)

Then, a support [ωn, ωn+1] defined from Ω contains a harmonic
mode if at least one position λi

n belongs to that support, i.e.
∃i, k, λi

k ∈ [ωn, ωn+1]. If such λi
k exists then we keep these

boundaries, otherwise we replace them by their midpoint, i.e.
(ωn + ωn+1)/2. Thus, we obtain an updated set of boundaries
Ω̃ = {ω̃n}n=0,...,Ñ . This process is repeated until all remaining
supports contains at least one of the initial local maxima λi

n.
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Fig. 2. Examples of angular boundaries, i.e. the sets Ωi
θ (the vertical red lines), obtained from different input textured images.

The second stage consists in removing the “smallest” sup-
ports as we expect that each harmonic mode contains enough
useful information. To perform this step, we simply compute
the width of each support ω̃n+1− ω̃n and if this quantity is larger
than a threshold T (the choice of T depends on the processed
histogram and will be discussed in the next section), we keep
these boundaries, otherwise we merge them using again the
midpoint rule described above. This process is repeated until
all supports are of width larger than T . This finally gives us our
final set of boundaries ΩF = {ωn}n=0,...,NF . The whole merging
algorithm is resumed in Algorithm 1.

Algorithm 1 Boundary sets merging algorithm.

Input: NT spectra Fi.
1: Apply the scale-space method on each spectrum to obtain

their corresponding set of boundaries Ωi.
2: Find the sets Λi of local maxima on each support.
3: Merge all sets of boundaries to obtain Ω.
4: Remove all supports which do not contain any of the local

maximum to get the set Ω̃.
5: Remove all supports of length less than the threshold T to

obtain the final set of boundaries ΩF .

2.3.2. Definition of the empirical curvelet filters
The construction of the empirical curvelet filters is based on

the procedure described in [42]. For each input image i, we de-
tect a set of scale boundaries, denoted Ωi

ω = {ωn
i }n=0,...,n=N i

s
, and

a set of angular boundaries, denoted Ωi
θ = {θm

i }m=1,...,N i
θ
, where

N i
s and N i

θ are respectively the number of detected scales and
angular sectors for the image i. Figure 2 illustrates the sets Ωi

θ

(the vertical red lines) corresponding to several input textured
images. Then we use the merging technique described above on
{Ωi

ω}i=1,...,NT and {Ωi
θ}i=1,...,NT to remove the useless supports (the

thresholds used to detect “small” supports are fixed to Tω = 0.2
and Tθ = 0.07, respectively). This process provides us two final
sets of scales and angular boundaries denoted Ωω = {ωn}n=0,...,Ns

and Ωθ = {θm}m=0,...,Nθ
, respectively.

Using the above notations, the empirical curvelet filters are
then made of: a lowpass filter (φ1) defined by (ω and θ corre-

spond to the polar coordinates in the Fourier domain and F2 the
2D Fourier transform), ∀θ ∈ [0, 2π],

F2(φ1)(ω, θ) =


1 if |ω| ≤ (1 − γ)ω1,
cos

[
π
2β

(
1

2γω1
(|ω| − (1 − γ)ω1)

)]
if (1 − γ)ω1 ≤ |ω| ≤ (1 + γ)ω1,

0 otherwise,

(3)

The function β is an arbitrary function belonging to Ck([0, 1]),
fulfilling the properties β(x) = 0 if x ≤ 0, β(x) = 1 if x ≥ 1 and
β(x) + β(1 − x) = 1,∀x ∈ [0, 1]. A classic choice is given by
β(x) = x4(35 − 84x + 70x2 − 20x3). The parameter γ allows us
to ensure that only two consecutive filters can overlap. We refer
the reader to [42] for more details about these two parameters
and how they can be automatically chosen. Like for standard
curvelets, the bandpass curvelet filters (ψnm) correspond to po-
lar wedges in the Fourier domain and are defined by the product
of a radial window Wn and a polar window Vm, i.e.

F2(ψnm) = WnVm (4)

where Wn, if n , Ns − 1, is given as:

Wn(ω) =



1 if (1 + γ)ωn ≤ |ω| ≤ (1 − γ)ωn+1,
cos

[
π
2β

(
1

2γωn+1
(|ω| − (1 − γ)ωn+1)

)]
if (1 − γ)ωn+1 ≤ |ω| ≤ (1 + γ)ωn+1,

sin
[
π
2β

(
1

2γωn
(|ω| − (1 − γ)ωn)

)]
if (1 − γ)ωn ≤ |ω| ≤ (1 + γ)ωn,

0 otherwise,

(5)

and if n = Ns − 1,

WN s−1(ω) =


1 if (1 + γ)ωNs−1 ≤ |ω|,
sin

[
π
2β

(
1

2γωNs−1

(
|ω| − (1 − γ)ωNs−1

))]
if (1 − γ)ωNs−1 ≤ |ω| ≤ (1 + γ)ωNs−1,

0 otherwise,

(6)

and Vm is defined as (assuming 2π periodicity of the angular

4



EWT2DC

+H

NW W

H

learned filter bank 
boundaries

input image  

training textures

low frequency 
component high frequency set 

 local energy
 computation

zero-center and
ZCA Whitening
processing

       feature images 
wavelet coefficients 

Fig. 3. Proposed texture feature extraction process.

sectors):

Vm(θ) =



1 if θm + ∆θ ≤ θ ≤ θm+1 − ∆θ,
cos

[
π
2β

(
1

2∆θ
(θ − θm+1 + ∆θ)

)]
if θm+1 − ∆θ ≤ θ ≤ θm+1 + ∆θ,

sin
[
π
2β

(
1

2∆θ
(θ − θm + ∆θ)

)]
if θm − ∆θ ≤ θ ≤ θm − ∆θ,

0 otherwise.

(7)

Finally, the corresponding filter bank is given by (x denotes a
pixel location in the 2D plane)

BEC =
{
φ1(x), {ψnm(x)}n=1...Ns−1,m=1...Nθ

}
, (8)

and we will denoteWEC
f (x) the empirical curvelet transform of

an image f , i.e.

WEC
f (x) = ((φ1 ∗ f )(x), (ψ11 ∗ f )(x), (ψ12 ∗ f )(x), (9)

. . . , (ψnm ∗ f )(x), . . . , (ψNsNθ
∗ f )(x)

)
,

where ∗ denotes the convolution product. In practice, since all
filters are defined in the Fourier domain, we perform all con-
volutions as pointwise products in the Fourier domain and take
the inverse Fourier transform to get the curvelet coefficients.

2.4. Texture feature extraction
Our main proposal is to utilize empirical curvelets to extract

texture features to feed the segmentation network instead of us-
ing the original image pixels directly. It is widely accepted that
wavelet (or curvelet) coefficients need to be post-processed to
obtain the expected features.

Based on (9), we denote the curvelet coefficients asWEC
f (x) :

D → RK where D is the image domain and K is the total num-
ber of curvelet filters. Let us denote T EC(x) : D → RK the
final feature vector at a given pixel x ∈ D. Its k−th coordi-
nate T ECk (x), k = 1, 2, ...,K, is obtained by applying a post-
processing operator E to the curvelet coefficients, i.e. T ECk (x) =

E[WEC
k ](x). In the field of wavelet-based feature vectors, local

energy is widely used as such operator, i.e.

T ECk (x) = E[WEC
k ](x) =

∑
y∈Dx

∣∣∣WEC
k (y)

∣∣∣2 (10)

where Dx is a window of size s × s pixels centered at x.
It has been shown in [77] that performing a zero-centering

and a ZCA (zero-phase component analysis) whitening [78] on
the input data improves the performance of convolutional neu-
ral networks. Let us denote X the Np × K feature matrix (Np

is the total number of pixels of the input image) whose rows
are the vectors T EC(x). The output matrix after performing
the ZCA whitening is obtained by Y =

√
(Np − 1)PD−1/2P>X,

where XX> = PDP>, P is an orthogonal matrix and D a di-
agonal matrix. The updated features in Y have less correlation
and hence are more discriminating. This matrix Y will be used
to feed the deep learning network described in the next section.
The whole process corresponding to texture features extraction
is illustrated in Fig. 3.

3. Fully Convolutional Network based Segmentation

In this section, we present the overall architecture used in
the proposed network. Since our architecture is based on fully
convolutional networks (FCN), we start to give a quick review
of FCN. Next we present the network architecture proposed to
segment grayscale texture images. Finally, we extend this ar-
chitecture to process color texture images.

3.1. Fully Convolutional Networks
Fully Convolutional Networks (FCN) were proposed in [71]

to perform semantic segmentation of images and have shown
their superiority among all other deep learning networks. The
idea is to adapt existing network architectures to perform a
dense classification pixelwise. The first layer is the image itself
and the other layers are all convolutional networks which in-
clude three basic components: convolution, pooling and activa-
tion functions. These components work on local input regions
and only depend on corresponding spatial coordinates. An ad-
vantage of an FCN is that they naturally work on input images
of arbitrary size and provides an output with the same size. The
learning and inference stages are performed on the whole image
at a time instead of processing patches independently of each
other. This is made possible through dense feedforward calcu-
lation and back propagation processing. The back propagation
step performs an interpolation of the coarse outputs by using

5



96

256
384 256 4096 4096 21

21

384

forward / inference

backward / learning

Fig. 4. Standard fully convolutional network makes dense predictions for
per-pixel semantic segmentation

an upsampling procedure whose weights can also eventually be
learned. This step can be seen as a dense pixel backward convo-
lution. Fig. 4 presents an instance of FCN with an input image
and its output pixel prediction. In [71], the author also proposed
a skip architecture to take advantage of the features in different
layers which combines deep, coarse information with shallow
and fine information to further refine the spatial precision of
the output. These different architectures are called FCN-32s,
FCN-16s and FCN-8s, depending on which levels are skipped,
respectively.

3.2. Network architecture to segment grayscale images

Recently, in [72], the authors proposed a modified FCN ar-
chitecture, called FCNT, to specifically address the problem of
texture segmentation. The FCNT is a modified version of FCN-
8s having one less convolutional layer based on the idea that the
complexity of texture patterns is less than the shape complexity
of semantic segmentation (see [71] for more details). Moreover,
the skip connections in FCNT are also shifted to the shallower
layers of the network, i.e. the first, second and third convo-
lutional blocks. In this paper, for grayscale texture images, we
first use the FCNT architecture but we feed the network with the
empirical wavelet features rather than the original pixel values.
Our architecture based on FCNT is depicted in Fig. 5 which
also provides an illustration of the skip architecture mentioned
earlier. Furthermore, we want to emphasize the reader that the
same idea of using the empirical wavelets to feed more complex
architectures such as U-Net [75], Siamese-Net [70], Deep Vi-
sual Attention Model (DA) [73] and PSP-Net [57] applies and
will be used in our experiments to assess the effectiveness of
our proposed architecture.

3.3. Network architecture to segment color images

To segment color images, we propose an architecture which
combines both the empirical curvelet features and the original
colors through the HSV channels of the input image. Assuming
that all input images are in the HSV format, we use the V chan-
nel to extract the texture feature information, i.e. the EWT2DC
filter bank is constructed by analyzing all V channels from each
texture image from the dictionary. When testing a new image,

the empirical curvelet features are then extracted from the same
V channel by the previously obtained empirical curvelet filter
bank. The HSV channels are used to feed the first two convolu-
tional layers in order to extract the color information while the
texture features (extracted from the V channel only) are used
to feed another convolutional layer to extract the geometry of
the texture information. Then, these two groups of layers (128
channels) are used to feed a simplified version of FCNT where
the prediction layers are obtained by summing the information
from the intermediate pool layers. The whole architecture is
illustrated in Fig. 6. Like for the grayscale case, the EWT fea-
tures can be combined with the color information with more
complex networks and will be assessed in the experiment sec-
tion.

4. Experiment Results

In this section, we present the obtained results when apply-
ing the architectures described in the previous sections. We
implement the proposed empirical wavelet features extraction
method described in Section 2 in Matlab by using the func-
tions available in the Empirical Wavelet Transform toolbox1.
In addition, we utilize the PyTorch toolbox to implement all
different networks on a single GTX 1080Ti external GPU with
11GB memory. To train the segmentation network, we use the
Adam optimizer where the learning rate is fixed to 10−3, the
decay weight to 10−4, β1 is set to 0.95 and β2 to 0.999. All ex-
periments were conducted on a laptop computer with 2.5GHz
quad-core Intel Core i7 processor and 16GB memory.

We test our approaches on three different datasets and
compare the segmentation results with existing algorithms.
Grayscale experiments are conducted on the Outex [79] and
UIUC [80] datasets while the Prague dataset [81] made of mo-
saics of colored textures is used to test the color based algo-
rithm. Qualitative and quantitative results are provided in the
following sections for assessment.

4.1. Grayscale textures
To assess the performance of the proposed algorithm for

grayscale textures, we select two popular texture datasets: Ou-
tex [79] and UIUC [80]. The Outex dataset has 100 compos-
ite texture images, each one being a composite of five training
textures. These are generated by mixing twelve different tex-
ture images with different rotations according to the regions de-
picted by the ground-truth shown in the top-left row of Fig. 7.
The UIUC dataset does not contain as many test images as
the Outex dataset, therefore we decided to build similar sets of
test images as the Outex dataset following the same procedure:
we selected thirteen pristine textures and randomly composed a
hundred test images using the same ground-truth images given
on the top-left row of Fig. 7. The size of all test images is
512 × 512 pixels and the size of all pristine textures for train-
ing is 256 × 256. Moreover, all images are encoded on 256
grayscales.

1Available at https://ww2.mathworks.cn/matlabcentral/

fileexchange/42141-empirical-wavelet-transforms
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Fig. 6. Network architecture used to segment color images

Fig. 7. The used ground-truths for test images and training images (left) and
some corresponding test image and training samples in Outex dataset (center)
and UIUC dataset (right).

Regarding the training stage, both datasets only have five dif-
ferent training pristine textures. Unfortunately, only five train-
ing textures are not sufficient to efficiently learn the different
weights involved in the deep neural networks. To solve this is-
sue, we generated an augmented training set of a 1000 images
(for each dataset) from five pristine textures by randomly gen-
erating ground-truths images. These ground-truths are built via
the following process: 1) we create a 256 × 256 random image
following a normal distribution within the range [0, 1], 2) we
apply a Gaussian filtering (σ = 10), 3) we binarize this filtered
image using a threshold corresponding to the median value of
the image. Then each connected components in that binary im-
age are labeled to provide different regions (since we only have
five pristine textures, we only keep the generated masks which
provide five regions). Finally, each pristine texture is assigned
to each mask region to obtain a training image. The second row
of Fig. 7 presents several created mask and their corresponding
training mosaics.

The window size used in the extraction of the texture fea-
tures is set to 1 (i.e. there is no spatial averaging) as we exper-
imentally found that it is the value which gives the best results.
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Moreover, since the textures in these datasets mainly contain
high frequency components, we simply discard the use of the
low frequency component (φ1 ∗ f ) from the empirical curvelet
coefficients.

Several approaches were proposed in the literature to quanti-
tatively assess segmentation performances. These methods are
mainly based on different interpretations of the notion of par-
tition. In this paper, we use the following metrics: normalized
variation of information (NVOI), swapped directional hamming
distance (SDHD), Van Dongen distance (VD), swapped seg-
mentation covering (SSC), bipartite graph matching (BGM)
and bidirectional consistency error (BCE). The reader is re-
ferred to [82] for more details and interpretations of these met-
rics. All these metrics provide a number between 0% and
100%, the latter corresponding to perfect segmentation. The
computation of these metrics is made easy via the availability
of the SEISM Toolbox2.

Fig. 8 and Fig.9 show some segmentation results obtained
on the Outex and UIUC datasets, respectively. The first row of
these figures depict some test images. The second row show
the results obtained by the classic FCNT approach (i.e. it does
not use any specific texture feature). The third row show the
results obtained by the proposed EWT-FCNT algorithm. The
fourth row correspond to our algorithm results after a final re-
finement step which consists in keeping all regions larger than
0.5% of the total number of pixels of the image while all other
regions are relabeled with the class index corresponding to the
largest adjacent region. All following rows are all refined by
this same method. To further illustrate the impact of feeding
neural networks with empirical curvelet based features v.s. the
pristine pixels, in the consecutive rows we provide the output
of the U-Net, Deep Visual Model (DA), Siamese-Net, PSP-Net
architectures with and without the use of empirical curvelets.
Visual inspections of these experiments illustrate the efficacy
of the proposed method. We also observe that the FCNT and
other CNN based algorithms generate a lot of misclassification,
especially in regions having nonuniform luminosity. In con-
trast, our method handles very well such problem because lu-
minosity changes mostly affect low frequencies and keep high
frequencies consistent from one image to the other. This means
that the use of empirical curvelets provides more stable textures
descriptors.

Table 1 gives quantitative measurements for each dataset
based on the previously mentioned metrics. We clearly observe
that the proposed algorithm largely outperforms the FCNT and
other CNN based approach. On average, our method EWT-
FCNT reaches 98.36% of good classification against 68.64%
for the classic FCNT on the Outex dataset and 97.17% against
91.09% on the UIUC dataset, respectively. The best results
of both two datasets are EWT-U-Net which reaches 98.83%
of good classification versus 70.28% for the classic U-Net on
the Outex dataset and 97.72% against 92.05% on the UIUC
dataset, respectively. The results in Table 1 also confirm that,
whichever considered neural network, the addition of the em-

2https://github.com/jponttuset/seism

Outex

FCNT

EWT-FCNT-NR

EWT-FCNT

UNet

EWT-UNet

DA

EWT-DA

SiameseNet

EWT-SiameseNet

PSPNet

EWT-PSPNet

Fig. 8. Grayscale experiment results on the Outex dataset. First row: input test
image to segment. Second row: FCNT segmentation without refinement.
Third and fourth row: segmentation from our proposed approach without and
with refinement, respectively. The fifth to twelve row illustrate the results
corresponding to the original and empirical curvelet based approaches for the
U-Net, DA, Siamese-Net and PSP-Net architectures.

8



Table 1
Benchmark results for the grayscale experiments.

Method Refinement NVOI SSC SDHD BGM VD BCE Average Standard Deviation

Outex
FCNT no 65.38 62.84 72.91 72.66 77.96 60.09 68.64 11.70

EWT-FCNT no 96.06 98.00 98.98 98.98 98.98 97.70 98.12 1.22
EWT-FCNT yes 96.52 98.27 99.13 99.13 99.13 98.02 98.36 0.74

U-Net yes 72.83 64.25 71.40 70.85 80.47 61.89 70.28 14.86
EWT-U-Net yes 97.51 98.79 99.39 99.39 99.39 98.54 98.83 0.73

DA yes 70.70 60.65 67.77 67.27 78.75 58.58 67.28 16.06
EWT-DA yes 95.84 97.82 98.89 98.89 98.89 97.45 97.97 0.89

Siamese-Net yes 67.46 56.77 64.36 63.60 76.46 53.80 63.74 12.89
EWT-Siamese-Net yes 86.66 88.47 93.09 93.03 93.87 86.32 90.24 6.92

PSP-Net yes 86.00 84.22 88.00 87.83 91.64 82.63 86.72 14.10
EWT-PSP-Net yes 96.05 97.93 98.94 98.94 98.94 97.53 98.06 1.04

UIUC
FCNT no 85.81 89.71 94.39 94.39 94.39 87.87 91.09 4.72

EWT-FCNT no 93.32 95.88 97.85 97.85 97.85 95.05 96.30 2.65
EWT-FCNT yes 94.66 96.89 98.40 98.40 98.40 96.25 97.17 1.79

U-Net yes 88.73 90.62 94.72 94.63 94.97 88.64 92.05 5.73
EWT-U-Net yes 95.87 97.50 98.71 98.71 98.71 96.84 97.72 2.07

DA yes 90.23 92.04 95.59 95.59 95.74 90.47 93.28 4.70
EWT-DA yes 93.09 95.19 97.43 97.43 97.44 94.16 95.79 3.67

Siamese-Net yes 75.05 70.37 79.17 78.80 83.85 67.98 75.87 11.47
EWT-Siamese-Net yes 78.54 78.02 85.54 85.06 87.89 75.00 81.67 10.99

PSP-Net yes 91.73 94.00 96.76 96.76 96.86 92.65 94.79 3.53
EWT-PSP-Net yes 94.57 96.78 98.34 98.34 98.34 96.07 97.07 1.64

pirical curvelet as texture descriptors permits to dramatically in-
crease their efficacy. Moreover, the stability of our approach is
also confirmed by the low value of the standard deviation. Fig-
ure 10 illustrate the four worst failure results obtained from the
Outex dataset by the EWT-U-Net approach. From the bench-
mark results, we observe that these worst results still reach more
than 96% of good classification which again illustrates the ef-
ficacy of the proposed method. The corresponding computa-
tion costs for the Outex and UIUC test images for each method
are available in Table 2. Except for the Siamese-Net architec-
ture which uses a 32 × 32 sliding window, all other approaches
spend very little time to segment the test images.

4.2. Color Textures
The Prague dataset [81] consists of 20 texture mosaics which

are synthetically generated from random compositions of 89
different pristine textures from 10 thematic categories. Each
mosaic and its associated training textures are color images,
they all have a size of 512 × 512 pixels. Some examples
of test input images and their ground-truths from that dataset
are shown in the first and second rows of Fig. 11, respec-
tively. The number of classes on each image varies from
3 to 12 and a single training image is provided for each
class. Quantitative comparisons are obtained, by using the
measures provided on the Prague texture segmentation web-
site [83]. These include: region-based metrics correct seg-
mentation (CS), over-segmentation (OS), under-segmentation

(US), missed error (ME), noise error (NE); pixel-based met-
rics: omission error (O), commission error (C), class accuracy
(CA), recall (CO), precision (CC), type I error (I.), type II error
(II.), mean class accuracy estimate (EA), mapping score (MS),
root mean square proportion estimation error (RM), compari-
son index (CI); consistency-based metrics: global consistency
error (GCE) and local consistency error (LCE); and clustering:
Mirkin metric (dM), Van Dongen metric (dD), the variation of
information (dVI). We refer the reader to [83] for complete de-
tails and interpretations of these metrics. All these criteria, ex-
cept dVI, are displayed after multiplication by 100.

Like for the grayscale experiments, we create a training set
of a 1000 texture mosaics. To guarantee enough variability,
we create mosaics of textures by randomly generating Voronoi
polygons which are then filled with randomly selected pristine
textures. All training mosaics size is 512 × 512 pixels; some
examples are illustrated in the bottom row of Fig. 11. We ex-
perimentally found that, in the texture features extraction stage,
a window size set to 19 × 19 pixels provides the best results. In
addition, since the pristine color textures clearly contain both
low and high frequencies, we kept the low frequency compo-
nent extracted by the EWT.

Like in the previous section, we again compare the EWT-
FCNT results (with and without refinement) with several neu-
ral networks (with and without feeding empirical curvelet fea-
tures) and the three best algorithms reported on the Prague
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Table 2
Average computational speed in grayscale dataset for each image

Method FCNT EWT-FCNT UNet EWT-UNet DA EWT-DA SiameseNet EWT-SiameseNet PSPNet EWT-PSPNet

Time 3.03ms 152.82ms 0.068ms 154.55ms 2.93ms 153.18ms 101.79s 99.80s 0.076ms 166.22ms

Table 3
Prague color dataset benchmark results. Each row corresponds to a segmentation quality measure and the arrow indicates whether large or low values are better. The
first rank is marked by boldface and the second rank is marked by an asterisk. Here NR means no post-processing segmentation refinement has been performed.

Method MRF COF Con-Col FCNT-NR FCNT EWT-FCNT-NR EWT-FCNT U-Net EWT-U-Net DA EWT-DA PSP-Net EWT-PSP-Net

↑ CS 46.11 52.48 84.57 87.52 96.01 98.11* 98.45 96.71 97.98 94.18 95.22 96.45 98.09
↓ OS 0.81 0.00 0.00 0.00 1.58 0.00 0.00 1.71 1.78 0.00 0.72 0.17* 1.70
↓ US 4.18 1.94 1.70 0.00 1.20 0.00 0.00 0.00 0.23* 1.18 2.61 0.41 0.00
↓ME 44.82 41.55 9.50 6.70 0.78 0.49* 0.37 0.68 0.78 3.42 2.76 1.23 0.37
↓ NE 45.29 40.97 10.22 6.90 0.89 0.46* 0.46* 0.48 0.68 3.24 2.64 1.12 0.09
↓ O 14.52 20.74 7.00 7.49 2.72 1.16 0.93 0.72 0.78* 3.13 0.92 2.75 1.57
↓ C 16.77 22.10 5.34 6.16 2.29 1.56 1.04* 0.7 1.53 1.32 1.70 2.39 1.82
↑ CA 65.42 67.01 86.21 87.08 93.95 97.01 97.67 95.86 97.24* 94.53 95.45 93.89 96.52
↑ CO 76.19 77.86 92.02 92.61 96.73 98.43* 98.78 96.91 98.32 96.23 97.18 96.06 98.18
↑ CC 80.30 78.34 92.68 93.26 97.02 98.46* 98.81 97.38 98.4 97.01 97.78 96.41 98.01
↓ I. 23.81 22.14 7.98 7.39 3.27 1.57* 1.22 3.09 1.68 3.77 2.82 3.94 1.82
↓ II. 4.82 4.40 1.70 1.49 0.68 0.33 0.25* 0.41 0.20 0.58 0.42 0.69 0.39
↑ EA 75.40 76.21 91.72 96.68 98.40* 98.77 97.01 98.32 96.24 97.05 96.08 98.08
↑MS 64.29 66.79 88.03 95.10 97.65* 98.17 95.37 97.49 94.35 95.76 94.08 97.27
↓ RM 6.43 4.47 2.08 1.38 0.86 0.28* 0.24 0.61 0.30 1.07 0.81 0.70 0.29
↑ CI 76.69 77.05 92.02 92.81 96.77 98.42* 98.78 97.08 98.34 96.41 97.24 96.15 98.09
↓ GCE 25.79 23.94 11.76 11.76 5.55 2.84 2.33 2.13 2.29* 3.50 3.43 4.67 3.20
↓ LCE 20.68 19.69 8.61 8.61 3.75 2.23 1.68 1.46 1.61* 2.47 2.34 3.52 2.70
↓ dD 20.35 17.86 7.50 3.06 1.57 1.21 1.45 1.32* 2.41 2.22 2.59 1.75
↓ dM 13.25 10.62 4.69 1.96 0.99 0.74 0.77* 0.74 1.35 1.26 1.56 1.08
↓ dVI 14.51 14.22 13.99 13.80 13.71 13.68 13.68 13.70* 13.71 13.73 13.77 13.71

texture segmentation website [83]. These three algorithms
are: 1) the MRF algorithm based on a Markov Random Field
pixel classification model [84], 2) the COF algorithm using co-
occurrence features and the nearest neighbor classifier, 3) the
Con-Col algorithm (no details are provided). Finally, the state-
of-the-art results are achieved by the FCNT algorithm. Table 3
presents the benchmark results for these experiments. Accord-
ing to these metrics, our approach EWT-FCNT (with refine-
ment) outperforms the state-of-the-art results indexed on the
Prague texture segmentation website. Moreover, The EWT-U-
Net, EWT-DA and EWT-PSP-Net approaches also provide bet-
ter segmentation results than their original (i.e. with empirical
curvelet) counterparts. It is again clear that the use of empir-
ical curvelets to extract texture features to feed a neural net-
work based segmentation algorithm dramatically impacts the
segmentation performances. It is also noticeable that, for most
experiments, even without the refinement step, the proposed al-
gorithm EWT-FCNT outperforms most existing state-of-the-art
approaches. Fig. 12 shows several segmentation results from
the algorithms mentioned above for visual comparison. We can
easily observe that our method not only gives the best visual
segmentation (notably near the edges) but also provides the
closest results to the ground-truths. The average computation
costs of each datatest are presented in Table 4.

5. Conclusion

In this paper, we addressed the question of supervised texture
segmentation/classification. We proposed a modified version of
a Fully Convolutional Network where, as opposed to what was
done in the current literature, we feed this network with specific

adapted texture features. These texture features are obtained
by building an “optimized” empirical curvelet filter bank. We
experimentally verified that our proposed algorithm, tested on
several classic datasets, outperforms all current state-of-the-art
algorithms. Moreover, we also illustrate that the same strat-
egy can be used for other neural network architectures and that
it always dramatically improves the performances. These re-
sults tend to show that convolutional layers in deep learning
networks are not necessarily good at capturing the appropriate
characteristics to perform accurate classification. This leads us
to think that if some specific features exist for the type of data
we have to classify, these features should be used to feed the
used deep learning networks.
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