
Investigation of moving objects through atmospheric
turbulence from a non-stationary platform

Nicholas Ferranteab, Jérôme Gillesb, and Shibin Parameswarana

aNaval Information Warfare Center Pacific, 53560 Hull St, San Diego, CA, USA
bSan Diego State University, 5500 Campanile Dr, San Diego, CA, USA

ABSTRACT

In this work, we extract the optical flow field corresponding to moving objects from an image sequence of a scene
impacted by atmospheric turbulence and captured from a moving camera. Our procedure first computes the
optical flow field and creates a motion model to compensate for the flow field induced by camera motion. After
subtracting the motion model from the optical flow, we proceed with our previous work, Gilles et al,1 where
a spatial-temporal cartoon+texture inspired decomposition is performed on the motion-compensated flow field
in order to separate flows corresponding to atmospheric turbulence and object motion. Finally, the geometric
component is processed with the detection and tracking method and is compared against a ground truth. All of
the sequences and code used in this work are open source and are available by contacting the authors.

Keywords: Target Detection, Atmospheric Turbulence, Camera Motion, Vector Field Decomposition, Wavelet
Decomposition, Optical Flow

1. INTRODUCTION

In image processing, the detection and tracking of objects in an image sequence is a classic problem. Typically,
the problem is broken into two steps: detection and tracking. The detection step has multiple variations in the
literature: background subtraction,2 temporal differencing,3 optical flow,4 and most recently the use of deep
learning.5 With the assumption of static camera, the method of background subtraction uses a running average
of past frames to build and update a background model. When a new frame is introduced, the difference of the
current frame and the foreground is assumed to correspond to real world motion. Optical flow based detection
estimates a displacement vector field for each pixel in the image. The magnitude of this vector field is computed
and any value above a certain threshold is assumed to correspond to a moving object. Neural networks exploit
the relationship between object detection and image understanding in tracking high-level features within an
image set. Once detected, a tracking algorithm is utilized in order to investigate the behavior of detections. The
primary methods of tracking in image processing are point based tracking (e.g. Kalman6 or particle filters7),
kernel based tracking (e.g. Simple Template Matching,8 Mean shift,9 Support Vector Machine,10 Layer based
tracking11), and silhouette based tracking (contour and shape matching12). A comparison of these methods is
presented by Balaji.13

In the case of a moving camera, there is an added complication of motion introduced through rigid body
motion. In order to compensate for the false motion, a camera motion model is needed. One of the primary
methods for creating a motion model is to use image registration between frames in order to find a relation
across feature points. Feature points are correlated between frames and their displacements are then used to fit
a model for camera motion. With the camera motion model, any locations in the image that do not conform to
the predicted location are presumed to be moving objects. A review of object detection in video images captured
by a moving camera is presented by Yaxdi.14

In this work, we add an extra level of difficulty by considering the presence of atmospheric turbulence in our
image sequence. Atmospheric turbulence is typically due to an energy exchange within a fluid that separates

Further author information:
Nicholas Ferrante: E-mail: nicholas.ferrante1@navy.mil, Telephone: +1 619-553-7877
Jérôme Gilles: E-mail: jgilles@sdsu.edu, Telephone: +1 619-594-7240
Shibin Parameswaran: E-mail: paramesw@spawar.navy.mil, Telephone: +1 619-553-1554

Figure 1: Frame 30 from the Courtyard4 sequence is shown (left) along with its corresponding version with the
introduction of simulated atmospheric turbulence (center). On the right is a close view of the remote control car
used in each sequence.

an observer and an object. In our case, this fluid is air that is impacted by a temperature gradient, driving
the change in the density of air and thus the change in the index of refraction. Through Snell’s15 law, the
change in the index of refraction causes light to bend as it moves between a target and the observer.16 This
phenomenon introduces geometric deformation and blur within an image scene, bringing with it a myriad of
problems in terms of image processing. With the temporal variance of the index of refraction, random oscillatory
movement is introduced within the image scene that causes the false appearance of motion and degrade feature
points needed for a camera motion model, therefore motivating a need for an object detection algorithm that
may handle the combined impact of atmospheric turbulence as well as camera motion.

In this work, we introduce an optical flow based method that builds a camera motion model that is effective
regardless of the impact of atmospheric turbulence. Once we build a camera motion model, we then are tasked
with detecting moving objects within a camera motion compensated optical flow field. The proposed solution
to this problem of detection is motivated by our prior work, Gilles et al.,1 where a preprocessing method was
introduced with the assumption of a static camera. In the proposed work, we extend the existing algorithm
to detect and track objects from an optical flow field that contains atmospheric turbulence and global camera
motion.

1.1 Data Collection

In order to properly test the methods proposed in this project, we needed a dataset that contains both atmo-
spheric turbulence and global camera motion. Unfortunately, before the start of this project, there were no data
sources available that contained small moving objects along with camera motion and atmospheric turbulence.
Therefore, we created our own dataset to act as an addendum to the preexisting Open Turbulence Image Set
(OTIS ∗).17 In this section, we discuss the utilized equipment, methods of data processing, and some examples
taken from the dataset. All sequences were recorded with a GoPro Hero 4 Black camera modified with a RibCage
Air chassis, permitting the use of several lens types. A small tripod was used to hold the camera and it was
manually rotated and translated in order to produce global camera motion. In order to introduce a moving object
in the image sequence, a remote control car was utilized (see Figure 1). Data sequences without atmospheric
turbulence were captured in the Engineering and Interdisciplinary Sciences Complex courtyard at San Diego
State University. Data sequences with naturally forming atmospheric turbulence were taken at Peterson Gym
600 practice field, San Diego State University, during the afternoon hours on 24 July 2018.
Once the image sequences were captured, the MP4 files were downloaded onto a Macintosh computer, converted

to PNG image files with the ffmpeg command†, and cropped using the imagemagick crop command‡ to contain a

∗https://zenodo.org/communities/otis/
†https://ffmpeg.org/
‡http://www.imagemagick.org/

https://zenodo.org/communities/otis/
https://ffmpeg.org/
http://www.imagemagick.org/

Table 1: Open source data set sequences from OTIS used in this research.
Name Size Turbulence

Courtyard1 [512× 512× 100] Simulated
Courtyard2 [350× 350× 113] Simulated
Courtyard3 [300× 300× 138] Simulated
Courtyard4 [512× 512× 100] Simulated

Field1 [512× 512× 100] Natural
Field2 [300× 300× 100] Natural
Field3 [512× 512× 101] Natural
Field4 [300× 300× 120] Natural
Field5 [300× 300× 72] Natural

field of view with the moving object. For the sequences containing atmospheric turbulence, no further processing
was needed, but for the sequences that were taken in the courtyard, an atmospherc turbulence simulator, devel-
oped by Tahtali, Fraser, and Lambert,18 was implemented. The result from one frame is shown in Figure 1. It
is important to notice that around the edges of the simulated sequence there exist black regions that may cause
added complications during object detection. Therefore we recommend that the user crop the image edges in
order to remove these artifacts. A summary of the datasets used in this work is shown in Table 1.
When assessing the effectiveness of our method, we require a ground truth for each of the sequences. Rather than
manually observing the location of the car in each sequence, we coded a MATLAB application which provides
a graphical user interface (GUI) to easily create a multiple-track ground truth which then can be used by the
performance metric function.

1.2 Optical Flow Computation

The nature of this work does not lend itself well to detecting objects in the image domain, therefore we focus
our efforts in the optical flow domain. The optical flow of an image sequence is the spatiotemporal vector field
corresponding to the spatial movement of each pixel from one frame to the next. A general example of what we
refer to by optical flow is demonstrated in Figure 2 where we have a region that moves from coordinates centered
about (x0, y0) to new coordinates (x1, y1). As the optical flow field is dense within the image, we are unable
to properly visualize the vectors in their traditional form, therefore we employ a technique which associates the
direction of each vector with a color on the colorwheel from Figure 2 with the intensity of the color corresponding
to the magnitude of the vector. There are many ways that optical flow may be computed, but for the purposes
of this work we will primarily use the Horn-Schunck (HS)19 and TV − L1 algorithm.20 These algorithms are
both interfaced through MATLAB by using C code provided by the Image Processing OnLine (IPOL) journal.

x0

y0

x1

y1

x0

y0

x1

y1

Figure 2: Illustration of the concept of optical flow. The left image represents an object (the red area) as its
initial position centered around (x0, y0) and its position in the next frame (the dashed area) centered around
(x1, y1). In the center figure, the set of arrows corresponds to the motion vectors i.e.optical flow. The colorwheel
on the right provides the correspondence between color and movement direction.

2. GLOBAL CAMERA MOTION

For the purposes of this work, global camera motion or simply, “global motion”, will refer to the rigid body mo-
tion that a camera may undergo. For generality, all angles of rotation and directions of translation are assumed
to be possible. In this section, we shall discuss the physical model that governs the impact of global camera
motion on perceived optical flow in the absence of atmospheric turbulence, followed by several methods that to
build a model to approximate the camera motion flow. Finally, we provide a discussion on building a motion
model when atmospheric turbulence is present.

The impact of camera motion in an optical flow field is apparent when looking at a color representation of a
flow in Figure 3a and the vector field quiver plot in Figure 3b. In order to investigate a model, we look to the
x and y components of our optical flow field V = (Vx, Vy). Each vector component will produce a 2D surface,
hence we utilize a surface plot in order to visualize the results as shown Figure 3c-3d. By investigating each
component separately, we see that there are smooth underlying structures in the flow that we may later extract.
It is also important to notice that the moving object stands out as a peak in the x component surface, thus
any method that we choose must preserve the peak corresponding to the moving object. Through the use of
the pinhole camera model,21 we may derive the relation between real world coordinates (X ,Y,Z) and the pixel
coordinates (x, y) which upon differentiation in time yield a model for the optical flow field corresponding to
camera motion. This relation relation is determined to be

Vx =
Tzx− Txf
Z

+ ωx
xy

f
− ωy

(
f +

x2

f

)
+ ωzy

Vy =
Tzy − Tyf
Z

+ ωx

(
f +

y2

f

)
− ωy

xy

f
− ωzx (1)

where f is the focal length, T(x,y,z) and ω(x,y,z) correspond to translation and rotation movement in the x, y, z
direction. This model is derived in detail in Appendix A. Next, we present two methods which may extract the
camera motion flow. First, we take a physics based approach by exploiting the optical flow camera motion model
in Equation (1). Second, we employ a filtering method to robustly obtain a camera motion flow model.

2.1 Analytic Motion Model Derivation

First, we propose a method of determining each parameter from the camera motion model by making an assump-
tion of constant depth Z. Pseudo code for the algorithm proposed in this section is presented in Algorithm 1.
By taking the curl of Equation (1) and asserting that Vz = 0 since we consider the focal length to be fixed, we

(a) Colorized Flow (b) Quiver plot (c) x componenet (d) y componenet

Figure 3: Representations of the optical flow field corresponding to the Courtyard4 sequence at frame 30 without
the inclusion of simulated turbulence.

get

∇×V =̂i (−∂zVy)− ĵ (−∂zVx) + k̂ (∂xVy − ∂yVx)

=̂i

(
Tzy − Tyf
Z2

)
+ ĵ

(
Txf− Tzx
Z2

)
+k̂

(
−ωy

y

f
− ωx

x

f
− 2ωz

)
. (2)

As the captured motion of interest is in the 2D image plane, we only need to consider the k̂ component, i.e.

(∇×V) · k̂ = −ωy
y

f
− ωx

x

f
− 2ωz. (3)

As mentioned in Appendix A, the image plane lies along the optical axis where its origin is at (0, 0, f). We note
that the image domain is symmetric about the origin and ergo the average of the x and y coordinates is zero.
Thus, denoting 〈·〉 to be the spatial average value over the image domain we get,

〈(∇×V) · k̂〉 = 〈−ωy
y

f
− ωx

x

f
− 2ωz〉 = −2ωz, (4)

which reveals

ωz =
−1

2
〈(∇×V) · k̂〉. (5)

Next, taking the derivative with respect to each coordinate, we find

∂x

(
(∇×V) · k̂

)
= −ωx

f

∂y

(
(∇×V) · k̂

)
= −ωy

f
. (6)

After taking the spatial average we obtain

ωx
f

= −
〈
∂x

(
(∇×V) · k̂

)〉
ωy
f

= −
〈
∂y

(
(∇×V) · k̂

)〉
. (7)

This provides us all of the radial motion information. Next, we discuss translation components Tx,y,z. At this
stage, we assume that the information from ω has already been computed. By taking the spatial average of the
velocity field,

〈Vx〉 = 〈V Tx 〉+ 〈V ωx 〉 = 〈V Tx 〉+

〈
−ωy

f

(
f2 + x2

)〉
〈Vy〉 = 〈V Ty 〉+ 〈V ωy 〉 = 〈V Ty 〉+

〈
ωx
f

(
f2 + y2

)〉
. (8)

where

〈V Tx 〉 =

〈
Tzx− Txf
Z

〉
=

〈
Tzx

Z

〉
−
〈
Txf

Z

〉
〈V Tx 〉 =

〈
Tzx− Txf
Z

〉
=

〈
Tzy

Z

〉
−
〈
Tyf

Z

〉
. (9)

Assuming Z to be constant, and hence Tx

Z ,
Ty

Z and Tz

Z is also considered as constant values given by,

〈V Tx 〉 = −
〈
Txf

Z

〉
= −Txf

Z

〈V Ty 〉 = −
〈
Tyf

Z

〉
= −Tyf

Z
, (10)

or equivalently,

Txf

Z
= −〈V Tx 〉 =

〈
−ωy

f

(
f2 + x2

)〉
− 〈Vx〉

Tyf

Z
= −〈V Ty 〉 =

〈
ωx
f

(
f2 + y2

)〉
− 〈Vy〉. (11)

Finally taking the divergence of our vector field we find the translation component Tz, i.e.

∇ ·V = 2
Tz
Z

+ 3ωx
y

f
− 3ωy

x

f
(12)

and in spatial average,

〈∇ ·V〉 = 2

〈
Tz
Z

〉
, (13)

hence, again considering that Tz

Z is constant, we obtain

Tz
Z

=
1

2
〈∇ ·V〉 . (14)

These equations give us a closed form solution to find all parameters within the model with the assumption of
a constant Z. From the numerical perspective, the derivatives are computed using a first order finite difference
scheme. Prior to computing the derivative, the data is smoothed in order to mitigate error induced by localized
fluctuations. The smoothing is performed with a 2D Gaussian filter on both Vx and Vy with a standard deviation
equal to one seventh the number of columns and rows. The value of one seventh is chosen as it removes localized
spatial fluctuations, such as moving objects and atmospheric turbulence, and may be changed for different
applications.

Algorithm 1 Pseudo code corresponding to the analytical compensation model

1: Inputs: flow to decompose V, focal length f
2: Smooth Vx and Vy with a Gaussian filter
3: Compute ωz (5), and ωx,y (7)

4: Using values
ωx,y

f compute
Tx,yf
Z (11)

5: Compute Tz

Z (14)
6: Substitute the computed components into (1) to produce the approximated global motion flow M.
7: Compute compensated optical flow Vc = V −M
8: return Vc

2.2 Empirical Camera Motion Model

In this section, we take an image processing standpoint to introduce a more robust empirical method to the
camera motion flow as compared to the physically derived analytic method in the previous section. We proceed
with motivation from Equation (1). Unfortunately, the assumption of a constant depth is not generally true,
hence a more robust method is required.
Experimentally, when implementing a Gaussian filter as a preprocessing step for differentiation in the analytic
method, the smoothed flow field produced appears qualitatively similar to the expected camera motion model
that we aim to estimate. This result is expected as the assumption of a smooth function Z(x, y), the model
from (25) will remain a smooth function even though it is no longer a simple polynomial. Recalling the end
goal of this work, detecting moving objects in atmospheric turbulence, we have no need for the parameters of
motion and thus we take the desired motion model to correspond to the output of a low pass filter. Taking a low
pass filter will remove localized fluctuations in the optical flow resulting from atmospheric turbulence and object
motion, thus leaving only the global camera motion. Just as we did in the analytic method, we empirically take
the standard deviation of the Gaussian to be one seventh the number of rows and columns in order to mitigate
the impact of localized fluctuations. The smoothing is performed separately on each component of the optical
flow at each frame.

2.3 In the Presence of Atmospheric Turbulence

Since the main goal of this work is to detect objects in a flow field impacted by both atmospheric turbulence
and global camera motion, we now need to look to the case where we include atmospheric turbulence. We will
simulate atmospheric turbulence on the example from Courtyard4 in Figure 3 so we may compare our result
to the original sequence without atmospheric turbulence. In practice, the analytic method from Section 2.1
is unable to consistently account for camera motion observed in the sequence when turbulence is added as we
loose the ability to take reliable derivatives due to the random motion induced from atmospheric turbulence.
The empirical filtering method from Section 2.2 is able to handle the localized oscillations from the atmospheric
turbulence by removing them through smoothing and hence is used routinely in this work. An example of the
motion model is demonstrated in Figure 4 where we see that we indeed remove the motion that is introduced
from camera motion as the resulting compensated optical flow is centered about zero. A colorized depiction of
the flow field is shown in Figure 5 where we see the orange and red motion from the camera motion is removed
leaving a primarily white background.

3. FLOW FIELD DECOMPOSITION

In this section, we address the problem of decomposing a 2D spatio-temporal vector field into its non-oscillating
and oscillating components. We will proceed by using the empirical method described in Section 2.2 to remove
the camera motion flow field as it produces the most consistent and reliable results. Moving forward, we refer
to Figure 6 as our motivation for the proposed method. In this figure we see that, even in the presence of
atmospheric turbulence, a moving object will correspond to a region of locally homogeneous vectors when we
take a 2D+Time viewpoint on the problem. When viewed frame by frame, these homogeneous regions may not
reveal a moving object, but using temporal information, these regions become apparent.

Optical flow Motion model Compensated optical flow

Figure 4: Demonstration of empirical motion model results when applied to Courtyard4 at frame 30 with the
inclusion of atmospheric turbulence. The x and y component are shown on the top and bottom left respectively.
In the middle is the corresponding components of the camera motion model. The compensated optical flow is
shown for each component to the right.

Frame 30 Optical flow V Camera motion model M
Motion-compensated

optical flow Vc

Figure 5: Demonstration of camera motion subtraction method from Courtyard4 at frame 30 with simulated
atmospheric turbulence. On the left, we see the image corresponding to frame 30 which has observable defor-
mation due to simulated atmospheric turbulence. To its right, we see the corresponding optical flow where the
impact of atmospheric turbulence is seen with the majority of the flow field occluded by camera motion. Next,
we have the camera motion model that is computed by the empirical method. Finally, we have the camera
motion-compensated optical flow field on the right, where we see only the impact of atmospheric turbulence.

3.1 Theoretical Background

A solution of this problem was proposed in our previous work1 by using a decomposition model inspired by
the classic “cartoon+textures” model used in image processing. The cartoon part corresponds to the geometric
information while the texture part corresponds to the oscillating component. This decomposition was extended to
2D spatio-temporal vector fields, i.e. our camera motion compensated optical flow Vc =

(
Vcx(x, y, t), Vcy (x, y, t)

)
.

The idea is first to rewrite the vector field as a complex scalar field, i.e. Ṽ (x, y, t) = Vcx(x, y, t) + ıVcy (x, y, t).
Then we use both complex wavelet or curvelet transform22 based on the computational or burden or resolution

Figure 6: Visualization of the temporal homogeneity that arises from a moving object in the compensated optical
flow from Courtyard4 using the Slicer application.

Figure 7: Temporal view for the decomposition of the motion compensated optical flow from Figure 6. On the
left is the geometric component of the optical flow and on the right is the oscillatory component. It is visually
apparent that the moving object stands out in the geometric component, while the atmospheric turbulence is
left in the oscillatory component.

needs. The curvelet vector field decomposition model is given by

(û, v̂) = arg min
u∈Ċ1

1,1

v∈Ċ∞−1,∞

‖u‖Ċ1
1,1

+ J∗C

(
v

µ

)
+

1

2λ
‖I − (u+ v)‖2L2 , (15)

where Ċ1
1,1 is a curvelet based function space and Ċ∞−1,∞ its dual. This model is utilized in order to preserve

geometric information whereas changing to a wavelet based method will provide appreciably faster run time,
as demonstrated in Figure 8, at the cost geometric resolution. The corresponding vector fields associated with
û and v̂ are respectively obtained by u = (<(û),=(û)) and v = (<(v̂),=(v̂)) where < and = denote real and
imaginary components. If we denote

∀z = |z|eıθ ∈ C, CShrink(z, λ) = max(0, |z| − λ)eıθ,

and C the curvelet transform, then the decomposition pseudocode is given by Algorithm 2.

Algorithm 2 Besov based decomposition numerical algorithm

1: Inputs: flow to decompose Vc, parameters λ, µ, maximum number of iterations Nmax
2: Initialization n = 0, Ṽ = Vcx + ıVcy , u

0 = 0, v0 = 0
3: repeat
4: vn+1 = Ṽ − un − C−1(CShrink(C(Ṽ − un), 2µ))
5: un+1 = C−1(CShrink(C(Ṽ − vn), 2λ))
6: until max(‖un+1 − un‖L2 , ‖vn+1 − vn‖L2) < 10−4 or n = Nmax
7: return

(
<(un+1),=(un+1)

)
,
(
<(vn+1),=(vn+1)

)

3.2 Experimental Results

The decomposition algorithm was implemented in MATLAB and either uses the wavelet transform or the curvelet
transform provided in the freely available Curvlab toolbox§. Experimentally, the choice of µ = λ = 1 in
the decomposition models works well for all sequences and is consistent with the results reported in.1 The
maximum number of iterations was fixed to five, though fewer iterations are observed to attain the threshold
max(‖un+1−un‖L2 , ‖vn+1− vn‖L2) < 10−4. Before we decompose the flow field, we utilize a leave-one-out cross
validation23 on the magnitude of the motion compensated optical flow to determine frames containing outliers
in the optical flow computation. As outlined in Algorithm 3, this method is performed by first computing the
maximum magnitude of the flow at each frame in the sequence. Then, each maximum is removed from the data
set and the change in the mean is observed. Any change that is outside of five-standard deviations of mean
is considered as an outlier in the computation in the optical flow. Once the cross validation is performed any
frames determined to be containing errors are linearly interpolated in time with neighboring frames deemed free
of outliers. As errors in optical flow computation appear in regions with significantly larger magnitude, these
regions act as Dirac-delta functions in the flow field. We know that the delta function is the neutral element in
convolution and thus when using the wavelet decomposition the wavelet profile appears at the position of the
outlier. This property leaves detection throughout the flow field impossible as the wavelet corresponding to the
error is large enough in magnitude to be considered a valid moving object. The leave-one-out cross validation
is performed with the function with κ = 5 as it produces consistent satisfactory results. Figure 7 illustrates
the decomposition of the motion compensated optical flow from Figure 6 into its geometric and oscillatory
components with the curvelet algorithm. Using this perspective, we qualitatively demonstrate the impact of our
method. A quantitative analysis is left to Section 4 where we implement a detection and tracking algorithm.
When the curvelet algorithm is implemented, it returns excellent results, but at a great computational cost.
Taking note that Algorithm 2 is valid for both wavelet and curvelet transforms, we implement both methods in
this work. We observe that implementing the wavelet transform gives similar qualitative results in the colorized
optical flow as the curvelet transform, but a considerable drop in runtime is reached. In Figure 8, the speedup of
the wavelet over the curvelet transform is emphasized with varying video resolutions. A quantitative comparison
of the wavelet and curvelet tranform detection and tracking results are shown in Section 4 with quantitative
metric scores. In general application, the use of wavelet or curvelet decomposition provide similar results, but if
one wishes to maintain the most geometric information, the curvelet decomposition will provide the best results.

4. DETECTION & TRACKING

After the flow field decomposition is performed, the next procedure is the detection and tracking of the moving
object. In order to detect a moving object in a flow field, we implement a velocity thresholding scheme as

§http://www.curvelet.org/software.html

Algorithm 3 Leave-one-out cross validation for outliers in optical flow

1: Inputs: flow F, integer threshold κ
2: Initialization: Compute magnitude of the optical flow ‖Fk‖ at each frame k = 1, 2, ..., Nframes

3: for i = 1 : Nframes

4: Compute mean Mi = 1
Nframes−1

∑
j 6=i ‖Fj‖

5: end
6: compute overall mean M̃ and standard deviation S̃ for M̃ ,

M̃ =
1

Nframes

Nframes∑
l=1

Ml, S̃ =

√√√√ 1

Nframes − 1

Nframes∑
m=1

|M̃ −Mm|

7: inds ←
{
i :
∣∣∣Mi − M̃

∣∣∣ > κS̃
}

8: return inds

http://www.curvelet.org/software.html

Figure 8: Comparison of a per-frame run time for the wavelet and curvelet decomposition for varying standard
video sizes.

explained in Section 4.1. Once the detection step is completed, the tracking step is implemented via a Kalman
Filter.24

4.1 Object Detection

In order to detect moving objects in the geometric component of our flow field decomposition, we need to
recall that parts of the low frequency oscillations from the atmospheric turbulence will remain in the geometric
component. With this thought in mind, the remaining low frequency oscillations captured in the geometric
component will not correspond to large values (typically close to zero), but will be detected if a naive threshold
operation is performed. We see from a surface plot of the data and a color representation of the flow in Figure 9,
that the moving object stands out from its surroundings in the geometric component of the flow than in the
motion compensated optical flow. In order to determine a threshold value, we compute a mean and a standard
deviation of a set number of past frames (typically set to five), then set the threshold to be five standard
deviations away from the mean value. Implementing this procedure, we have the threshold value Ti at each
frame i, to be Ti = Mi + 5σi where Mi is the mean magnitude and σi the standard deviation of the magnitude
of a flow F. In practice we compute Mi and σi through

Mi =
1

NrowsNcols

Nrows∑
r=1

Ncols∑
c=1

‖F(r, c, i)‖, σi =

√√√√ 1

NrowsNcols − 1

Nrows∑
r=1

Ncols∑
c=1

|‖F(r, c, i)‖ −Mi|.

where Nrows and Ncols are the number of rows and columns in a frame, respectively. Once the detection method is
implemented, mathematical morphology operations are applied on the mask through image opening and closing.
Finally, the centroid and bounding box of each region are computed in the mask.

4.2 Object Tracking

With centroids in hand, the detected locations are assigned to existing tracks through the Hungarian assignment
Algorithm25 using the optimized algorithm from Miller, Stone and Cox.26 Once the detections are assigned to
tracks, a prediction is made for each track by way of a Kalman Filter.24 In order to assign detections to tracks,

Motion Compensated Optical Flow Geometric Component

Figure 9: Detection and tracking result for Courtyard4 at frame 30 with the top presenting the detected mask
and the bottom is the magnitude of the magnitude of the flow with the computed threshold shown in red.

the Kalman Filter requires one of two motion models: constant velocity or constant acceleration. If the motion
is assumed to be linear then the constant velocity is the best choice, and if the motion is assumed nonlinear then
the constant acceleration is the better option. We assume that in this application the motion from the camera
will be coupled with that of a moving object, hence a nonlinear motion model is a preferred choice. Proceeding,
any point that has passed the acceptance criterion is assigned to a track, and is annotated on both the sequence
frame and its mask. The tracking algorithm then proceeds to the next frame and continues until termination.
The results from applying the proposed method are shown in Figures 10-12 where sequences with both simulated
atmospheric turbulence and naturally forming atmospheric turbulence are demonstrated.

Each sequence is scored with a performance metric for the curvelet (uC), wavelet (uW), and compensated
optical flow Vc (i.e. without any decomposition) and are shown in a table below each figure. In each table,
five different metrics are computed in order to provide a quantitative analysis. Next to each metric we put an
↑ to denote the best score possible being one and ↓ being zero. In this work we utilize the following metrics:
the F-1 Score (F1↑), positive predictive value (PPV↑), false discovery rate rate (FDR↓), accuracy (ACC↑) and
false negative rate (FNR↓). Detailed information on the computation of these metrics is presented by Fawcett.27

Due to the amount of generated atmospheric turbulence, the camera motion compensated flow field is unable to
discern the moving object from its surroundings. However, once the geometric component of the same field is
investigated, the moving object is located and tracked. In Figure 12, due to the lack of atmospheric turbulence
that was formed, both algorithms perform comparably. The performance analysis is computed by providing a
ground truth structure from the ground truth application mentioned in Section 1.1.

Frame 20 Frame 35 Frame 50 Frame 65 Frame 80 Frame 95

V

uC

uW

Vc

Flow F1↑ FDR↓ PPV↑ ACC↑ FNR↓
uC 0.7351 0.1920 0.8080 0.7188 0.0893

uW 0.3601 0.4911 0.5089 0.3571 0.1518

Vc 0.4408 0.6138 0.3862 0.3772 0.0089

Figure 10: Results from Courtyard2 which contains simulated atmospheric turbulence. Detection results are
shown in image domain as well as a colorized version of the optical flow as to give context to the reader.

Frame 20 Frame 35 Frame 50 Frame 65 Frame 80 Frame 95

V

uC

uW

Vc

Flow F1↑ FDR↓ PPV↑ ACC↑ FNR↓
uC 0.5926 0.1414 0.8586 0.5859 0.2727

uW 0.3973 0.2475 0.7525 0.3889 0.3636

Vc 0.4471 0.5047 0.4953 0.3741 0.1212

Figure 11: Results from Courtyard4 which contains simulated atmospheric turbulence. Take note of the multiple
false positive results in Vc from the simulated atmospheric turbulence.

Frame 20 Frame 35 Frame 50 Frame 65 Frame 80 Frame 95

V

uC

uW

Vc

Flow F1↑ FDR↓ PPV↑ ACC↑ FNR↓
uC 0.7374 0.1818 0.8182 0.7374 0.0808

uW 0.2862 0.5000 0.5000 0.2778 0.2222

Vc 0.4158 0.5404 0.4596 0.3990 0.0606

Figure 12: Results from Field1 which contains naturally forming atmospheric turbulence. Take note of the
multiple false positive results in Vc from the naturally forming atmospheric turbulence. Secondarily, take note
of the smearing in uC and uW due to the displacement of the object across the window over few frames due to
camera motion.

u

v

VcMV

Optical Flow Motion Model Compensated Flow

Geometric Component

Oscillatory Component

Frame

Figure 13: The decomposition process for the simulated turbulence sequence Courtyard4 at frame 30 when using
the empirical camera motion model and curvelet decomposition.

5. CONCLUSION

In this study we have discussed the creation of an image set that contains global camera motion with both
simulated or natural atmospheric turbulence as well as the development of an algorithm that detects moving
objects from the procured image set. The demonstrated algorithm is able to take an input data sequence,
determine its optical flow, and decompose it into its camera motion, geometric, and oscillatory flow fields as
summarized in Figure 13. Next, we perform a detection and tracking method on the geometric flow field in
order to determine locations within the image set where moving objects exist. The detection of these objects, as
well as the preprocessing steps taken to extract the camera motion flow, provide a novel solution to a previously
understudied problem. In future work, we will address extensions in four fronts: the inclusion of depth in the
motion compensation, the runtime of the cartoon+texture decomposition, the inclusion of camera motion in the
Kalman filter prediction step, and finally the confirmation on more datasets.

In the model for global motion flow we have assumed a smooth function to describe the change in Z. In
reality, this may not be a fair assumption as a change in depth can be instantaneous. From the camera’s per-
spective, an object that is occluding the field of view i.e. a mountain range or a building, may introduce such
phenomena. This sharp change will cause a step discontinuity in the optical flow components. In order to handle
this step discontinuity, we require a method that segments the flow into regions corresponding to each region

Figure 14: Depiction of the step discontinuity in the magnitude of the optical flow corresponding to an instanta-
neous change in depth Z. Frame 90 from Field4 (left) is presented with a colorized depiction of the optical flow
(center) and the magnitude of the optical flow (right).

of depth. An example of this step discontinuity is shown in Figure 14 where the fence in the sequence causes
an instantaneous change in the depth of the image field of view. Once the regions are segmented, the empirical
Gaussian smoothing method will provide a motion model for each region.

Recalling Figure 8 we saw the curvelet decomposition did not scale well to larger video sizes. This is a
shortcoming that renders real time application impossible. We saw that a naive implementation of the wavelet
transform provides acceptable results but failed to capture detailed temporal information. This is certainly due
to the bias from scaling the spatial domain equally with the temporal domain. With a sequence with only a
few frames, we have rich temporal information over small scales, while a larger video size has no need for such
detailed information. Therefore an implementation of a two-dimensional wavelet transform over the spatial infor-
mation and a one-dimensional transformation over the temporal information is suggested. This method should
preserve the wavelet runtime, while providing a fair weighting between the scales for the problem. This approach
would be also lend well to coupling sequential data sequences. The current decomposition process operates
on three-dimensional data cubes, making coupling another data set difficult to implement. By structuring the
decomposition in a way that is separating the spatial and temporal information, it motivates the idea that we
may couple data by only taking a new spatial wavelet transform and adding the new temporal information from
a new frame.

When using the detection and tracking algorithm, we notice that, even with the inclusion of false positive
detections, the algorithm is able to detect and track the moving object accurately. During the implementation of
the Kalman Filter, we provide simply a constant acceleration motion model, without the input of the model for
camera motion. Without knowledge of camera motion, the Kalman filter is not working as efficiently as possible
as its predictions are impacted by the camera motion. As we have already built a motion model, we have a
prediction for the location of each pixel in the next frame. If we were to couple this knowledge with the Kalman
filter prediction step, a more accurate tracking algorithm could be created.

Finally, this work only contained a limited data set, some of which did not contain heavy enough atmospheric
turbulence to offset the speed at which the object was moving. As we detect the object by adaptive thresholding
of the speed of the flow, we expect that a fast moving object will be detected in most situations. A dataset that
contains a slow moving object with a moving camera would be a great demonstration and further confirmation
of this promising algorithm.

6. ACKNOWLEDGMENT

This work was supported by the Air Force Office of Scientific Research under the grant number FA9550-15-1-0065.

APPENDIX A. CAMERA MOTION MODEL DERIVATION

We previously observed that the flow induced by camera motion is a smooth function by appearance (see
Figure 3). One model for the optical flow induced by global camera motion is derived from the pinhole camera
model (16) and has been previously presented by Thompson and Pong28 as well as Trucco and Verri.21 From
Trucco and Verri, the pinhole camera model is given by (16)

p = f
P
Z

(16)

where P = (X ,Y,Z) in the usual 3D camera reference basis. The projection center is chosen to be the origin of
that reference basis and f denotes the focal length. This model provides a relation between points in the image
scene P and their projections in the image plane p = [x, y, f]>. As the image plane is at a constant location
along the optical axis, the third coordinate f is dropped from the notation to have the point in the image plane
p = [x, y]>. A depiction of this projection, from Vismara29 is shown in Figure 15. The relative motion between
P and the camera is described as

V = −T− ω × P, (17)

Y

X

Optical Axis

Image Plane

P = (X ;Y;Z)p = (x; y)
v

u

Camera Center

Z

Figure 15: Illustration of the pinhole camera model having the focal plane in front of the camera center. The
image point p is located at f on the optical axis Z.

where T = (Tx, Ty, Tz) is the translation component of motion and ω = (ωx, ωy, ωz) the angular component
which are constant at a given frame for all arbitrary points P as we have rigid body camera motion. We denote
P,Y,R the optical flows induced by pitch (i.e. by ωx), yaw (i.e. by ωy) and roll (i.e. by ωz). Then (17)
expressed by its coordinates becomes,

Vx = −Tx − ωyZ + ωzY
Vy = −Ty − ωzX + ωxZ
Vz = −Tz − ωxY + ωyX . (18)

To obtain the relation between the velocity of P in real-world coordinates and the corresponding velocity of p
on the image plane, we take the time derivative of both sides of equation (16) to obtain through the quotient
rule our predicted optical flow,

V = f
ZV − VzP
Z2

, (19)

where by substituting (17) and (18) into (19) we get

Vx = f
ZVx − VzX

Z2

Vy = f
ZVy − VzY
Z2

. (20)

Converting from real world coordinates to 2D image plane coordinates, we get

Vx = f
ZVx − VzZ x

f

Z2
= f
Vx − Vz xf
Z

Vy = f
ZVy − VzZ y

f

Z2
= f
Vy − Vz yf
Z

(21)

and expanding Vx, Vy, Vz into 2D pixel coordinates, we get

Vx = −Tx − ωyZ + ωz
y

f

Vy = −Ty − ωz
x

f
+ ωxZ

Vz = −Tz − ωx
y

f
+ ωy

x

f
, (22)

then by combining (21) and (22) we finally obtain,

Vx =
Tzx− Txf
Z

+ ωx
xy

f
− ωy

(
f +

x2

f

)
+ ωzy

Vy =
Tzy − Tyf
Z

+ ωx

(
f +

y2

f

)
− ωy

xy

f
− ωzx. (23)

We observe that the velocity field is the sum of two components, one containing information about camera
translation and the other containing information about rotation. Hence we denote the translation components
to be

V Tx =
Tzx− Txf
Z

V Ty =
Tzy − Tyf
Z

, (24)

and the rotation components to be,

V ωx = ωx
xy

f
− ωy

(
f +

x2

f

)
+ ωzy

V ωy = ωx

(
f +

y2

f

)
− ωy

xy

f
− ωzx. (25)

We notice that in each velocity component, information on depth Z and rotation ω are decoupled. This shows
that the part of the velocity field that depends on angular velocity does not carry information on depth

REFERENCES

[1] Gilles, J., Alvarez, F., Ferrante, N., Fortman, M., Tahir, L., Tarter, A., and von Seeger, A., “Detection
of moving objects through turbulent media. decomposition of oscillatory vs non-oscillatory spatio-temporal
vector fields,” Image and Vision Computing 73, 40–55 (2018).

[2] Shaikh, S. H., Saeed, K., and Chaki, N., “Moving object detection using background subtraction,” in [Moving
Object Detection Using Background Subtraction], 15–23, Springer (2014).

[3] Yi, Z. and Liangzhong, F., “Moving object detection based on running average background and temporal
difference,” in [Intelligent Systems and Knowledge Engineering (ISKE), 2010 International Conference on],
270–272, IEEE (2010).

[4] Chauhan, A. K. and Krishan, P., “Moving object tracking using gaussian mixture model and optical flow,”
International Journal of Advanced Research in Computer Science and Software Engineering 3(4) (2013).

[5] LeCun, Y., Bengio, Y., and Hinton, G., “Deep learning,” nature 521(7553), 436 (2015).

[6] Patel, H. A. and Thakore, D. G., “Moving object tracking using Kalman filter,” International Journal of
Computer Science and Mobile Computing 2(4), 326–332 (2013).

[7] Gordon, N., Ristic, B., and Arulampalam, S., “Beyond the Kalman filter: Particle filters for tracking
applications,” Artech House, London 830, 5 (2004).

[8] Briechle, K. and Hanebeck, U. D., “Template matching using fast normalized cross correlation,” in [Optical
Pattern Recognition XII], 4387, 95–103, International Society for Optics and Photonics (2001).

[9] Comaniciu, D., Ramesh, V., and Meer, P., “Real-time tracking of non-rigid objects using mean shift,”
in [Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.
PR00662)], 2, 142–149, IEEE (2000).

[10] Avidan, S., “Support vector tracking,” in [Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR 2001], 1, I–I, IEEE (2001).

[11] Zhou, Y. and Tao, H., “A background layer model for object tracking through occlusion,” in [Proceedings
Ninth IEEE International Conference on Computer Vision], 1079–1085, IEEE (2003).

[12] Rosenhahn, B., Brox, T., Cremers, D., and Seidel, H.-P., “A comparison of shape matching methods for
contour based pose estimation,” in [International Workshop on Combinatorial Image Analysis], 263–276,
Springer (2006).

[13] Balaji, S. and Karthikeyan, S., “A survey on moving object tracking using image processing,” in [2017 11th
international conference on intelligent systems and control (ISCO)], 469–474, IEEE (2017).

[14] Yazdi, M. and Bouwmans, T., “New trends on moving object detection in video images captured by a
moving camera: A survey,” Computer Science Review 28, 157–177 (2018).

[15] Giancoli, D. C., [Physics for scientists & engineers with modern physics], vol. 2, Pearson Education (2008).

[16] Hyde, M. W., Schmidt, J. D., Havrilla, M. J., and Cain, S. C., “Determining the complex index of refraction
of an unknown object using turbulence-degraded polarimetric imagery,” Tech. Rep. 12 (2010).

[17] Gilles, J. and Ferrante, N. B., “Open turbulent image set (OTIS),” Pattern Recognition Letters 86, 38–41
(2017).

[18] Tahtali, M., Fraser, D., and Lambert, A., “Restoration of non-uniformly warped images using a typical
frame as prototype,” in [TENCON 2005 2005 IEEE Region 10], 1–6, IEEE (2005).

[19] Horn, B. K. and Schunck, B. G., “Determining optical flow,” Artificial intelligence 17(1-3), 185–203 (1981).

[20] Zach, C., Pock, T., and Bischof, H., “A duality based approach for realtime TV-L1 optical flow,” in [Joint
Pattern Recognition Symposium], 214–223, Springer (2007).

[21] Trucco, E. and Verri, A., [Introductory techniques for 3-D computer vision], vol. 201, Prentice Hall Engle-
wood Cliffs (1998).

[22] Candès, E. J., Demanet, L., Donoho, D. L., and Ying, L., “Fast discrete curvelet transforms,” Multiscale
Modeling and Simulation 5(3), 861–899 (2005).

[23] Kohavi, R. et al., “A study of cross-validation and bootstrap for accuracy estimation and model selection,”
in [Ijcai], 14(2), 1137–1145, Montreal, Canada (1995).

[24] Kalman, R. E., “A new approach to linear filtering and prediction problems,” Journal of basic Engineer-
ing 82(1), 35–45 (1960).

[25] Munkres, J., “Algorithms for the assignment and transportation problems,” Journal of the society for
industrial and applied mathematics 5(1), 32–38 (1957).

[26] Miller, M. L., Stone, H. S., and Cox, I. J., “Optimizing murty’s ranked assignment method,” IEEE Trans-
actions on Aerospace and Electronic Systems 33(3), 851–862 (1997).

[27] Fawcett, T., “An introduction to roc analysis,” Pattern recognition letters 27(8), 861–874 (2006).

[28] Thompson, W. B. and Pong, T.-C., “Detecting moving objects,” International journal of computer vi-
sion 4(1), 39–57 (1990).

[29] VISMARA, C., “Monitoring human state in a robotic assistive platform: data acquisition and person
detection systems,” (2015).

	INTRODUCTION
	Data Collection
	Optical Flow Computation

	Global Camera Motion
	Analytic Motion Model Derivation
	Empirical Camera Motion Model
	In the Presence of Atmospheric Turbulence

	Flow Field Decomposition
	Theoretical Background
	Experimental Results

	Detection & Tracking
	Object Detection
	Object Tracking

	Conclusion
	Acknowledgment
	Camera motion model derivation

